(本題滿分14分) 已知等差數(shù)列的公差大于,且、是方程
的兩根.數(shù)列的前項(xiàng)和為,滿足  
(Ⅰ) 求數(shù)列,的通項(xiàng)公式;
(Ⅱ) 設(shè)數(shù)列的前項(xiàng)和為,記.若為數(shù)列中的最大項(xiàng),求實(shí)數(shù)的取值范圍.
解:(Ⅰ)由+=12,=27,且>0,所以=3,=9,
從而,          (3分)
在已知中,令,得
當(dāng)時(shí),,,兩式相減得,,
,                    (6分)
(Ⅱ)
                             (8分)
當(dāng)時(shí),
                                   (11分)
時(shí),
時(shí),
則有                                                (14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)等差數(shù)列的前項(xiàng)和為且滿足中最大的項(xiàng)為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列的前四項(xiàng)和為10,且成等比數(shù)列
(1)求通項(xiàng)公式
(2)設(shè),求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

本小題滿分10分)已知,且組成等差數(shù)列(為正偶數(shù)),又;
(1)求數(shù)列的通項(xiàng);
(2)求的值;
(3) 比較的值與的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分16分,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分)
設(shè)等比數(shù)列的前項(xiàng)和為,已知.
(1)求數(shù)列的通項(xiàng)公式;(2)在之間插入個(gè)1,構(gòu)成如下的新數(shù)列:,求這個(gè)數(shù)列的前項(xiàng)的和;、(3)在之間插入個(gè)數(shù),使這個(gè)數(shù)組成公差為的等差數(shù)列(如:在之間插入1個(gè)數(shù)構(gòu)成第一個(gè)等差數(shù)列,其公差為;在之間插入2個(gè)數(shù)構(gòu)成第二個(gè)等差數(shù)列,其公差為,…以此類推),設(shè)第個(gè)等差數(shù)列的和是. 是否存在一個(gè)關(guān)于的多項(xiàng)式,使得對(duì)任意恒成立?若存在,求出這個(gè)多項(xiàng)式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列的兩個(gè)根,那么的值為(   )
A.-12B.-6C.12D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列的前項(xiàng)和記為,,點(diǎn)在直線上,
(1)當(dāng)實(shí)數(shù)為何值時(shí),數(shù)列是等比數(shù)列?
(2)在(1)的結(jié)論下,設(shè)是數(shù)列的前項(xiàng)和,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,已知 
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若S5= a8+5,S6=" a7+" a9-5,則公差d等于.

查看答案和解析>>

同步練習(xí)冊(cè)答案