分析 (1)將式子an+1=3an-2an-1右側(cè)的an移到左側(cè)即可得出an+1-an=2(an-an-1),代入bn,利用對數(shù)的運算性質(zhì)化簡即可得出bn=1+bn-1,故而數(shù)列{bn}為等差數(shù)列;
(2)由(1)得出{bn}的通項公式,使用裂項法求和.
解答 解:(1)∵an+1=3an-2an-1,∴an+1-an=2(an-an-1),
∴bn=log2[2(an-an-1)]=1+log2(an-an-1)=1+bn-1,
∴bn-bn-1=1.
∵b1=log2(a2-a1)=log22=1,
∴數(shù)列{bn}是以1為首項,1為公差的等差數(shù)列.
(2)由(1)知bn=n,
∴$\frac{1}{_{n}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
設(shè)數(shù)列{$\frac{1}{_{{\;}_{n}}_{n+1}}$}的前n項和為Tn,
則Tn=(1-$\frac{1}{2}$)+($\frac{1}{2}-\frac{1}{3}$)+($\frac{1}{3}-\frac{1}{4}$)+…+($\frac{1}{n}-\frac{1}{n+1}$)=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
點評 本題考查了等差關(guān)系的判定,裂項法求和,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在任意位置,直線AC與直線BD垂直 | |
B. | 在任意位置,直線AB與直線CD垂直 | |
C. | 在任意位置,直線AD與直線BC垂直 | |
D. | 對任意位置,三對直線“AC與BD”,“AB與CD”,“AD與BC”均不垂直 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com