【題目】已知函數(shù)f(x)的定義域?yàn)閇﹣2,2],若對于任意的x,y∈[﹣2,2],都有f(x+y)=f(x)+f(y),且當(dāng)x>0時,有f(x)>0
(1)證明:f(x)為奇函數(shù);
(2)若f(1)=3求f(x)在[﹣2,2]上的值域.
【答案】
(1)證明:令x=y=0,∴f(0)=0,
令y=﹣x,∴f(x)+f(﹣x)=f(0)=0,∴f(﹣x)=﹣f(x).
故f(x)為奇函數(shù)
(2)解:f(x)在[﹣2,2]上為單調(diào)遞增函數(shù).下面給出證明:
任取﹣2≤x1<x2≤2,∴x2﹣x1>0,∴f(x2﹣x1)>0,
∵f(x)在[﹣2,2]上的奇函數(shù),
∴f(x2)﹣f(x1)=f(x2)+f(﹣x1)=f(x2﹣x1)>0,
∴f(x2)>f(x1),
∴f(x)在[﹣2,2]上為單調(diào)遞增函數(shù).值域?yàn)閇﹣6,6]
【解析】(I)令x=y=0,可得f(0)=0,再令y=﹣x,代入即可判斷出奇偶性.(Ⅱ)f(x)在[﹣2,2]上為單調(diào)遞增函數(shù).利用奇偶性與單調(diào)性的定義及其當(dāng)x>0時,有f(x)>0,即可證明.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于a∈R,下列等式中恒成立的是( )
A.cos(﹣α)=﹣cosα
B.sin(﹣α)=﹣sinα
C.sin(90°﹣α)=sinα
D.cos(90°﹣α)=cosα
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將標(biāo)號為1,2,3,4,5,6的6張卡片放入3個不同的信封中.若每個信封放2張,其中標(biāo)號為1,2的卡片放入同一信封,則不同的方法共有種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x),則函數(shù)f(x)的圖象與直線x=a的交點(diǎn)( )
A.有1個
B.有2個
C.有無數(shù)個
D.至多有一個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若集合A={﹣2,0,1},B={x|x<﹣1或x>0},則A∩B=( )
A.{﹣2}
B.{1}
C.{﹣2,1}
D.{﹣2,0,1}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)與g(x)的圖象在R上不間斷,由表知函數(shù)y=f(x)﹣g(x)在下列區(qū)間內(nèi)一定有零點(diǎn)的是( )
x | ﹣1 | 0 | 1 | 2 | 3 |
f(x) | ﹣0.677 | 3.011 | 5.432 | 5.980 | 7.651 |
g(x) | ﹣0.530 | 3.451 | 4.890 | 5.241 | 6.892 |
A.(﹣1,0)
B.(0,1)
C.(1,2)
D.(2,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一排9個座位坐了3個三口之家.若每家人坐在一起,則不同的坐法種數(shù)為( )
A.3×3!
B.3×(3!)3
C.(3!)4
D.9!
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從裝有2個紅球和2個黑球的口袋內(nèi)任取2個球,那么互斥而不對立的兩個事件是( )
A.“至少有一個紅球”與“都是黑球”
B.“至少有一個黑球”與“都是黑球”
C.“至少有一個黑球”與“至少有1個紅球”
D.“恰有1個黑球”與“恰有2個黑球”
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com