【題目】祖暅?zhǔn)俏覈媳背瘯r期杰出的數(shù)學(xué)家和天文學(xué)家祖沖之的兒子,他提出了一條原理:“冪勢既同冪,則積不容異”.這里的“冪”指水平截面的面積,“勢”指高.這句話的意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體體積相等.一般大型熱電廠的冷卻塔大都采用雙曲線型.設(shè)某雙曲線型冷卻塔是曲線 與直線, 和所圍成的平面圖形繞軸旋轉(zhuǎn)一周所得,如圖所示.試應(yīng)用祖暅原理類比求球體體積公式的方法,求出此冷卻塔的體積為_______.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐,底面為菱形,平面,,分別是的中點.
1證明:;
2若為上的動點,與平面所成最大角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若長方體的底面是邊長為2的正方形,高為4,是的中點,則( )
A.B.平面平面
C.三棱錐的體積為D.三棱錐的外接球的表面積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) .
(I)求的單調(diào)區(qū)間;
(II)當(dāng)0<a<2時,求函數(shù)在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與軸相切于點,且被軸所截得的弦長為,圓心在第一象限.
(Ⅰ)求圓的方程;
(Ⅱ)若點是直線上的動點,過作圓的切線,切點為,當(dāng)△的面積最小時,求切線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是半圓的直徑,,是將半圓圓周四等分的三個分點.
(1)從這5個點中任取3個點,求這3個點組成直角三角形的概率;
(2)在半圓內(nèi)任取一點,求的面積大于的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點處的切線方程為.
(1)求和實數(shù)的值;
(2)設(shè), 分別是函數(shù)的兩個零點,求證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小王大學(xué)畢業(yè)后,決定利用所學(xué)專業(yè)進行自主創(chuàng)業(yè).經(jīng)過市場調(diào)查,生產(chǎn)某小型電子產(chǎn)品需投入年固定成本3萬元,每生產(chǎn)x萬件,該產(chǎn)品需另投入流動成本萬元.在年產(chǎn)量不足8萬件時,,在年產(chǎn)量不小于8萬件時,每件產(chǎn)品的售價為5元.通過市場分析,小王生產(chǎn)的商品能當(dāng)年全部售完.
(1)寫出年利潤單位:萬元關(guān)于年產(chǎn)量單位:萬件的函數(shù)解析式.
(2)年產(chǎn)量為多少萬件時,小王在這一商品的生產(chǎn)中所獲利潤最大?最大利潤是多少?
注:年利潤年銷售收入固定成本流動成本
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的圓心在軸右側(cè),原點和點都在圓上,且圓在軸上截得的線段長度為3.
(1)求圓的方程;
(2)若,為圓上兩點,若四邊形的對角線的方程為,求四邊形面積的最大值;
(3)過點作兩條相異直線分別與圓相交于,兩點,若直線,的斜率分別為,,且,試判斷直線的斜率是否為定值,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com