已知橢圓過(guò)點(diǎn),且離心率e=.
(Ⅰ)求橢圓方程;
(Ⅱ)若直線(xiàn)與橢圓交于不同的兩點(diǎn)、,且線(xiàn)段的垂直平分線(xiàn)過(guò)定點(diǎn),求的取值范圍。
(Ⅰ);(Ⅱ).

試題分析:(Ⅰ)由題意橢圓的離心率
          
∴橢圓方程為                         …………2分
又點(diǎn)在橢圓上        ……………4分
∴橢圓的方程為                        ……………6分
(Ⅱ)設(shè)   由
消去并整理得   …………8分
∵直線(xiàn)與橢圓有兩個(gè)交點(diǎn)
,即
  中點(diǎn)的坐標(biāo)為……10分
設(shè)的垂直平分線(xiàn)方程:
上       即
……11分
將上式代入得    
  的取值范圍為……12分
點(diǎn)評(píng):直線(xiàn)與圓錐曲線(xiàn)聯(lián)系在一起的綜合題在高考中多以高檔題、壓軸題出現(xiàn),主要涉及位置關(guān)系的判定,弦長(zhǎng)問(wèn)題、最值問(wèn)題、對(duì)稱(chēng)問(wèn)題、軌跡問(wèn)題等.突出考查了數(shù)形結(jié)合、分類(lèi)討論、函數(shù)與方程、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知兩點(diǎn)F1(-1,0)及F2(1,0),點(diǎn)P在以F1、F2為焦點(diǎn)的橢圓C上,且|PF1|、|F1F2|、|PF2|構(gòu)成等差數(shù)列.

(1)求橢圓C的方程;
(2)如圖,動(dòng)直線(xiàn)l:y=kx+m與橢圓C有且僅有一個(gè)公共點(diǎn),點(diǎn)M,N是直線(xiàn)l上的兩點(diǎn),且F1M⊥l, F2N⊥l.求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求滿(mǎn)足下列條件的橢圓方程長(zhǎng)軸在軸上,長(zhǎng)軸長(zhǎng)等于12,離心率等于;橢圓經(jīng)過(guò)點(diǎn);橢圓的一個(gè)焦點(diǎn)到長(zhǎng)軸兩端點(diǎn)的距離分別為10和4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,且過(guò)點(diǎn)(),
(1)求橢圓的方程;
(2)設(shè)直線(xiàn)與橢圓交于P,Q兩點(diǎn),且以PQ為對(duì)角線(xiàn)的菱形的一頂點(diǎn)為(-1,0),求:△OPQ面積的最大值及此時(shí)直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓是其左頂點(diǎn)和左焦點(diǎn),是圓上的動(dòng)點(diǎn),若,則此橢圓的離心率是       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分16分)
橢圓:的左、右頂點(diǎn)分別、,橢圓過(guò)點(diǎn)且離心率.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓上異于、兩點(diǎn)的任意一點(diǎn)軸,為垂足,延長(zhǎng)到點(diǎn),且,過(guò)點(diǎn)作直線(xiàn)軸,連結(jié)并延長(zhǎng)交直線(xiàn)于點(diǎn),線(xiàn)段的中點(diǎn)記為點(diǎn).
①求點(diǎn)所在曲線(xiàn)的方程;
②試判斷直線(xiàn)與以為直徑的圓的位置關(guān)系, 并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓的左焦點(diǎn)為, 點(diǎn)在橢圓上, 如果線(xiàn)段的中點(diǎn)軸的
正半軸上, 那么點(diǎn)的坐標(biāo)是         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓,左右焦點(diǎn)分別為,
(1)若上一點(diǎn)滿(mǎn)足,求的面積;
(2)直線(xiàn)于點(diǎn),線(xiàn)段的中點(diǎn)為,求直線(xiàn)的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分13分)設(shè)橢圓的右焦點(diǎn)為,直線(xiàn)軸交于點(diǎn),若(其中為坐標(biāo)原點(diǎn)).
(1)求橢圓的方程;
(2)設(shè)是橢圓上的任意一點(diǎn),為圓的任意一條直徑(、為直徑的兩個(gè)端點(diǎn)),求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案