分析 將x2+4y2-2x+8y+1=9化簡為(x-1)2+4(y+1)2=4,利用換元法,令$\left\{\begin{array}{l}x-1=2cosθ\\ y+1=sinθ\end{array}$,通過三角函數的有界性,求出最小值即可.
解答 解:由題意:x2+4y2-2x+8y+1=0,化簡為(x-1)2+4(y+1)2=4,
令$\left\{\begin{array}{l}x-1=2cosθ\\ y+1=sinθ\end{array}$,θ∈[0,2π).
則:x=2cosθ+1,y=sinθ-1.
所以:x+2y=2cosθ+1+2sinθ-2=2cos θ+2sin θ-1=2$\sqrt{2}$sin($θ+\frac{π}{4}$)-1
∵sin($θ+\frac{π}{4}$)的最小值為-1,
∴x+2y的最小值-2$\sqrt{2}$-1.
故答案為:-2$\sqrt{2}$-1.
點評 本題考查了圓與直線的位置關系問題.屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{3}{2}$ | B. | -$\frac{2}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | .1個 | B. | 2個 | C. | .3個 | D. | 4個 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com