設(shè)f(x)=-x3+x2+2ax.
(1)若f(x)在(,+∞)上存在單調(diào)遞增區(qū)間,求a的取值范圍.
(2)當(dāng)0<a<2時(shí),f(x)在[1,4]上的最小值為-,求f(x)在該區(qū)間上的最大值.
(1)由f ′(x)=-x2+x+2a
=-(x-)2++2a
當(dāng)x∈[,+∞)時(shí),f ′(x)的最大值為f ′()=+2a;令+2a>0,得a>-
所以,當(dāng)a>-時(shí),f(x)在(,+∞)上存在單調(diào)遞增區(qū)間.即f(x)在(,+∞)上存在單調(diào)遞增區(qū)間時(shí),a的取值范圍是(-,+∞).
(2)令f ′(x)=0,得兩根
所以f(x)在(-∞,x1),(x2,+∞)上單調(diào)遞減,
在(x1,x2)上單調(diào)遞增.
當(dāng)0<a<2時(shí),有x1<1<x2<4,
所以f(x)在[1,4]上的最大值為f(x2),
又f(4)-f(1)=-+6a<0,即f(4)<f(1)
所以f(x)在[1,4]上的最小值為f(4)=8a-=-,得a=1,x2=2,
從而f(x)在[1,4]上的最大值為f(2)=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知e為自然對(duì)數(shù)的底數(shù),設(shè)函數(shù)f(x)=(ex-1)(x-1)k(k=1,2),則( )
A.當(dāng)k=1時(shí),f(x)在x=1處取到極小值
B.當(dāng)k=1時(shí),f(x)在x=1處取到極大值
C.當(dāng)k=2時(shí),f(x)在x=1處取到極小值
D.當(dāng)k=2時(shí),f(x)在x=1處取到極大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若函數(shù)f(x)=sin2x+sinx,則f ′(x)是( )
A.僅有最小值的奇函數(shù)
B.僅有最大值的偶函數(shù)
C.既有最大值又有最小值的偶函數(shù)
D.非奇非偶函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)f(x)=lnx,g(x)=f(x)+f ′(x).
(1)求g(x)的單調(diào)區(qū)間和最小值;
(2)討論g(x)與g()的大小關(guān)系;
(3)求a的取值范圍,使得g(a)-g(x)<對(duì)任意x>0成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知銳角α終邊上一點(diǎn)P的坐標(biāo)是(2sin2,-2cos2),則α等于( )
A.2 B.-2
C.2- D-2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若直線(xiàn)y=a與函數(shù)y=sinx,x∈[-2π,2π)的圖像有4個(gè)交點(diǎn),則a的取值范圍是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com