【題目】已知函數f(x)是奇函數,且定義域為(﹣∞,0)∪(0,+∞).若x<0時,f(x)=﹣x﹣1.
(1)求f(x)的解析式;
(2)解關于x的不等式f(x)>0.
【答案】
(1)解:當x>0時,﹣x<0,f(﹣x)=x﹣1﹣
∵函數f(x)是定義域為的奇函數.
∴f(x)=﹣f(﹣x)=1﹣x
∴f(x)=
(2)解:∵f(x)>0
∴ 或
解得:x<﹣1或0<x<1
故不等式的解集為:(﹣∞,﹣1)∪(0,1)
【解析】(1)利用函數的奇偶性的定義,直接求解函數的解析式即可.(2)利用分段函數列出不等式求解即可.
【考點精析】認真審題,首先需要了解函數奇偶性的性質(在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇).
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知,在直角坐標系中,直線的參數方程為(為參數);在以坐標原點為極點, 軸的正半軸為極軸的極坐標系中,直線的極坐標方程是.
(Ⅰ)求證: ;
(Ⅱ)設點的極坐標為, 為直線, 的交點,求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知離心率為 的橢圓 過點M(2,1),O為坐標原點,平行于OM的直線i交橢圓C于不同的兩點A、B.
(1)求橢圓C的方程;
(2)記直線MB、MA與x軸的交點分別為P、Q,若MP斜率為k1 , MQ斜率為k2 , 求k1+k2 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若二次函數f(x)=ax2+bx+c(a,b,c∈R)滿足f(x+1)﹣f(x)=4x+1,且f(0)=3.
(1)求f(x)的解析式;
(2)設g(x)=f(2x),求g(x)在[﹣3,0]的最大值與最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面四個函數:(1)y=1﹣x;(2)y=2x﹣1;(3)y=x2﹣1;(4)y= ,其中定義域與值域相同的函數有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com