如圖,四棱錐S-ABCD 的底面是正方形,每條側(cè)棱的長都是底面邊長的倍,P為側(cè)棱SD上的點.
(Ⅰ)求證:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,則側(cè)棱SC上是否存在一點E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,試說明理由.
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
如圖,已知點B在以AC為直徑的圓上,SA⊥面ABC,AE⊥SB于E,AF⊥SC于F.
(I)證明:SC⊥EF;
(II)若求三棱錐S—AEF的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面為直角梯ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分別為PC,PB的中點.
(1)求證:PB⊥DM;
(2)求CD與平面ADMN所成角的正弦值;
(3)在棱PD上是否存在點E,PE∶ED=λ,使得二面角C-AN-E的平面角為60o.存在求出λ值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)在正四棱柱ABCD-A1B1C1D1中,E為CC1的中點.
(1)求證:AC1∥平面BDE;(2)求異面直線A1E與BD所成角。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
如圖4,已知四棱錐,底面是正方形,面,點是的中點,點是的中點,連接,.
(1)求證:面;
(2)若,,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)
如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. ,為的中點.
(1)當時,求平面與平面的夾角的余弦值;
(2)當為何值時,在棱上存在點,使平面?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
如圖,在平行四邊形中,,將它們沿對角線折起,折后的點變?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/cd/4/dqotb1.png" style="vertical-align:middle;" />,且.
(Ⅰ)求證:平面平面;
(Ⅱ)為線段上的一個動點,當線段的長為多少時,與平面所成的角為?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(12分)在四棱錐中,底面ABCD是邊長為1的正方形,平面ABCD,PA=AB,M,N分別為PB,AC的中點,
(1)求證:MN //平面PAD (2)求點B到平面AMN的距離
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com