函數(shù)y=
x+1
x-1
的定義域是(  )
A、(-1,+∞)
B、[-1,+∞)
C、(-1,1)∪(1,+∞)
D、[-1,1)∪(1,+∞)
分析:由題意可得分母不為0,開(kāi)偶次方被開(kāi)方數(shù)非負(fù),解不等式組可求函數(shù)的定義域.
解答:解:由題意可得
x+1≥0
x-1≠0
,
∴x≥-1且x≠1,
故函數(shù)y=
x+1
x-1
的定義域是為:{x|x≥-1且x≠1}.
故選:D.
點(diǎn)評(píng):本題主要考查了函數(shù)的定義域的求解,解題的關(guān)鍵是尋求函數(shù)有意義的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
x-1x+1
的值域?yàn)?
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A為函數(shù)y=ln(-x2-2x+8)的定義域,集合B為函數(shù)y=x+
1
x+1
的值域,集合C為不等式(ax-
1
a
)(x+4)≤0
的解集.
(1)求A∩B;
(2)若C⊆?RA,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題:
①函數(shù)y=
x-1
x+1
的單調(diào)區(qū)間是(-∞,-1)∪(-1,+∞).
②函數(shù)f(x)=|x|•(|x|+|2-x|)-1有2個(gè)零點(diǎn).
③已知函數(shù)f(x)=ex-mx+1的圖象為曲線C,若曲線C存在與直線y=
1
2
x垂直的切線,則實(shí)數(shù)m的取值范圍是m>2.
④若函數(shù)f(x)=
(3a-1)x+4a(x<1)
logax    (x≥1)
對(duì)任意的x1≠x2都有
f(x2)-f(x1)
x2-x1
<0
,則實(shí)數(shù)a的取值范圍是(-
1
7
,1].
其中正確命題的序號(hào)為
②③
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法:
①x>2是x2-3x+2>0的充分不必要條件.
②函數(shù)y=
x-1
x+1
圖象的對(duì)稱(chēng)中心是(1,1).
③已知x,y∈R,i為虛數(shù)單位,且(x-2)i-y=1+i,則(1+i)x-y的值為-4.
④若函數(shù)f(x)=
(3a-1)x+4a(x<1)
logax(x≥1)
,對(duì)任意的x1≠x2都有
f(x2)-f(x1)
x2-x1
<0
,則實(shí)數(shù)a的取值范圍是(
1
7
,1)

其中正確命題的序號(hào)為
①③
①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
x-1
x+1
,則函數(shù)單調(diào)遞增區(qū)間是
(-∞,-1)和[1,+∞)
(-∞,-1)和[1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案