已知f(n)=(2n+7)·3n+9,存在自然數(shù)m,使得對(duì)任意n∈N*。都能使m整除f(n),
求最大的m的值。
解:∵ f(1)=36,f(2)=108=3×36,f(3)=360=10×36, ∴ f(1)、f(2)、f(3)能初36整除。猜想f(n)。猜想f(n)能被36整除。 證明:n=1,2時(shí),由上得證。 設(shè)n=k(k≥2時(shí), f(k)=(2k+7)時(shí)·3k+9能被36整除, 則n=k+1時(shí), f(k+1)-f(k)=(2k+9)·3k+1-(2k+7) ·3k=(6k+27)·3k-(2k+7)·3k=(4k+20) ·3k =36(k+5)·3k-2(≥2)。 ∴ f(k+1)能被36整除。 ∵ f(1)不能被大于36的數(shù)整除, ∴ 所求最大的m的值等于36。
|
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知f(n)=(2n+7)·3n+9,存在自然數(shù)m,使得對(duì)任意n∈N,都能使m整除f(n),求m的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年遼寧省瓦房店市高二4月月考數(shù)學(xué)理卷 題型:選擇題
已知f(n)=(2n+7)·3n+9,存在自然數(shù)m,使得對(duì)任意n∈N,都能使m整除f(n),則最大的m的值為( )
A、30 B、 26 C、 36 D、 6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆安徽省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知f(n)=(2n+7)3n+9,存在自然數(shù)m,使得對(duì)任意正整數(shù)n,都能使m整除f(n),猜測(cè)出最大的m的值。并用數(shù)學(xué)歸納法證明你的猜測(cè)是正確的。
【解析】本試題主要考查了歸納猜想的運(yùn)用,以及數(shù)學(xué)歸納法的證明。
∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36
∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除
然后證明n=1,2時(shí),由上得證,設(shè)n=k(k≥2)時(shí),
f(k)=(2k+7)·3k+9能被36整除,則n=k+1時(shí),
f(k+1)-f(k)=(2k+9)·3k+1?-(2k+7)·3k=(6k+27)·3k-(2k+7)·3k
=(4k+20)·3k=36(k+5)·3k-2?(k≥2) 證明得到。解析 ∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36
∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除
證明 n=1,2時(shí),由上得證,設(shè)n=k(k≥2)時(shí),
f(k)=(2k+7)·3k+9能被36整除,則n=k+1時(shí),
f(k+1)-f(k)=(2k+9)·3k+1?-(2k+7)·3k=(6k+27)·3k-(2k+7)·3k
=(4k+20)·3k=36(k+5)·3k-2?(k≥2) f(k+1)能被36整除
∵f(1)不能被大于36的數(shù)整除,∴所求最大的m值等于36
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com