某幾何體三視圖如圖所示,其中三角形的三邊長與圓的直徑均為2,則該幾何體體積為( 。
A、
32+8
3
3
π
B、
32+
3
3
π
C、
4+3
3
3
π
D、
4+
3
3
π
考點:由三視圖求面積、體積
專題:空間位置關系與距離
分析:利用三視圖判斷組合體的形狀,利用三視圖的數(shù)據(jù)求解組合體的體積即可.
解答: 解:由三視圖可知組合體是下部是半徑為1的球體,上部是底面直徑為2,母線長為2的圓錐,
該幾何體體積為兩個幾何體的體積的和,即:
4
3
π×13+
1
3
π×12×
22-12
=
4+
3
3
π

故選:D.
點評:本題考查三視圖求解組合體的體積,判斷組合體的形狀是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,2),
b
=(m,2),且
a
b
=|
a
|2,那么m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,AD⊥DC,DB平分∠ADC,E為PC的中點,AD=CD=1,DB=2
2
,PD=2.
(1)證明:PA∥平面BDE;
(2)證明:AC⊥平面PBD;
(3)求三棱錐B-ADE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若平面向量
a
,
b
滿足|
a
+
b
|=1,且
a
=2
b
,則|
b
|=( 。
A、
2
3
B、
1
3
C、1
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某批發(fā)點1月份銷售商品情況如表:
商品名稱批發(fā)數(shù)量/件每件批發(fā)價/元每件成本價/元
A商品10003.02.5
B商品1500108
C商品120064
則該批發(fā)點A商品的批發(fā)利潤率為
 
;該批發(fā)點1月份的利潤為
 
元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的不等式:|x-
m
2
|≤
1
2
(m∈Z),2是其解集中唯一的整數(shù)解.
(1)求m的值;
(2)已知正實數(shù)a,b,c滿足a2+4b2+16c2=m,求a+2b+4c的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是公比大于零的等比數(shù)列,且a1=b1=2,a3=b3=8.
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)記cn=abn,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點M(0,-1)的直線l交雙曲線2x2-y2=3于兩個不同的點A,B,O是坐標原點,直線OA與OB的斜率之和為1,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a是實數(shù),函數(shù)f(x)=ax2+2x-1,如果函數(shù)y=f(x)在區(qū)間[-1,1]上有零點,求a的取值范圍.

查看答案和解析>>

同步練習冊答案