8.如圖,在四面體A-BCD中,F(xiàn)、E、H分別是棱AB、BD、AC的中點(diǎn),G為DE的中點(diǎn).
(Ⅰ)證明:直線EF∥平面ACD
(Ⅱ)證明:直線HG∥平面CEF.

分析 本題考查空間立體幾何線面平行的判定定理.第1題利用EF為△ABD的中位線來(lái)證明EF∥平面ACD;第2題可利用三角形相似性來(lái)證明線面平行,同時(shí)也可平面證明GHN∥平面CEF,來(lái)得到直線HG∥平面CEF.

解答 (Ⅰ)證明,如右圖:
∵E、F分別為BD、BA的中點(diǎn),EF為△ABD的中位線,
∴EF∥AD 且 EF=$\frac{1}{2}$AD,
∵EF?平面ACD,AD?平面ACD,
∴EF∥平面ACD;
(Ⅱ)證法一:如圖,連接BH,BH與CF交于K,連接EK.
∵F、H分別是AB、AC的中點(diǎn),
∴K是△ABC的重心,
∴$\frac{BK}{BH}$=$\frac{2}{3}$.
又據(jù)題設(shè)條件知,$\frac{BE}{BG}$=$\frac{2}{3}$,
∴$\frac{BK}{BH}$=$\frac{BE}{BG}$,∴EK∥GH.
∵EK?平面CEF,GH?平面CEF,
∴直線HG∥平面CEF.

證法二如:圖,取CD的中點(diǎn)N,連接GN、HN.
∵G為DE的中點(diǎn),∴GN∥CE.
∵CE?平面CEF,GN?平面CEF,∴GN∥平面CEF.
   連接FH,EN
∵F、E、H分別是棱AB、BD、AC的中點(diǎn),
∴FH∥BC,EN∥BC,F(xiàn)H=$\frac{1}{2}BC$,EN=$\frac{1}{2}BC$∴FH∥EN,F(xiàn)H=EN
∴四邊形FHNE為平行四邊形,∴HN∥EF.
∵EF?平面CEF,HN?平面CEF,
∴HN∥平面CEF.HN∩GN=N,
∴平面GHN∥平面CEF.
∵GH?平面GHN,∴直線HG∥平面CEF.

點(diǎn)評(píng) 空間立體幾何線面平行的判定屬于高考常見(jiàn)題型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若b<a<0,則下列不等關(guān)系中不能成立的是( 。
A.$\frac{1}{a}<\frac{1}<0$B.b2>a2C.|b|>|a|D.b3>a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.點(diǎn)P在△OAB內(nèi)(含邊界)運(yùn)動(dòng),且$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,則2x+y的最大值為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在測(cè)量某物理量的過(guò)程中,因儀器和觀察的誤差,使得n次測(cè)量分別得到a1,a2,…an,共n個(gè)數(shù)據(jù),我們規(guī)定所測(cè)量物理量的“最佳近似值”a是這樣一個(gè)量:與其他近似值比較,a與各數(shù)據(jù)的差的平方和最。来艘(guī)定,從a1,a2,…,an推出的a=( 。
A.$\sqrt{{\frac{a_1^2+a_2^2+…+a_n^2}{n}}}$B.$\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{n}$
C.$\root{n}{{a}_{1}{a}_{2}…{a}_{n}}$D.$\frac{n}{\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.復(fù)數(shù)Z滿足(z-i)•i=1+i,則復(fù)數(shù)Z的模為(  )
A.2B.1C.$\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知A(1,2,3),B(2,-1,1),點(diǎn)M在線段AB上,且AM:MB=1:2.則M坐標(biāo)為$(\frac{4}{3},1,\frac{7}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.定義在[-10,10]上的偶函數(shù)f(x)在(-∞,0)是單調(diào)遞減,f(2a2+a+1)<f(3a2-2a+1),則a的取值范圍如何?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知f(x)=$\sqrt{3}$sinxcosx-cos2x+$\frac{1}{2}$,△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且f(A)=1.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求角A的大;
(Ⅲ)若a=7,b=5,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.將函數(shù)y=f(x)圖象上每一點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)擴(kuò)大到原來(lái)的2倍,再把所得的圖象沿x軸向右平移$\frac{π}{2}$個(gè)單位,這樣所得的曲線與y=3sinx的圖象相同,則函數(shù)y=f(x)的表達(dá)式是( 。
A.$f(x)=3sin({\frac{x}{2}-\frac{π}{2}})$B.$f(x)=3sin({\frac{x}{2}+\frac{π}{4}})$C.f(x)=-3sinxD.f(x)=3cos2x

查看答案和解析>>

同步練習(xí)冊(cè)答案