3.兩圓相交于兩點(diǎn)A(1,3)和B(m,n),且兩圓圓心都在直線x-y-2=0上,則m+n的值是4.

分析 求出A、B的中點(diǎn)坐標(biāo),代入直線方程,求出AB的斜率,推出方程組,求解即可.

解答 解:兩圓相交于兩點(diǎn)A(1,3)和B(m,n),且兩圓圓心都在直線x-y-2=0上,
可得KAB=-1,即-1=$\frac{n-3}{m-1}$,…①
AB的中點(diǎn)($\frac{m+1}{2}$,$\frac{n+3}{2}$)在直線上,可得$\frac{m+1}{2}$-$\frac{n+3}{2}$-2=0…②,
由①②可得m=5,n=-1,
∴m+n=4.
故答案為:4.

點(diǎn)評(píng) 本題考查兩個(gè)圓的位置關(guān)系,直線與圓的位置關(guān)系的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.計(jì)算下列各式(式中字母都是正數(shù))
(1)(3a${\;}^{\frac{2}{3}}}$b${\;}^{\frac{1}{2}}}}$)•(-4a${\;}^{\frac{1}{2}}}$b${\;}^{\frac{1}{3}}}}$)÷(-4a${\;}^{\frac{1}{6}}}$b${\;}^{\frac{5}{6}}}}$);
(2)2log525-3log28.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程是ρ=2,矩形ABCD內(nèi)接于曲線C1,A,B兩點(diǎn)的極坐標(biāo)分別為(2,$\frac{π}{6}$)和(2,$\frac{5π}{6}$),將曲線C1上所有點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)縮短為原來的一半,得到曲線C2
(1)寫出C,D的直角坐標(biāo)及曲線C2的參數(shù)方程;
(2)設(shè)M為C2上任意一點(diǎn),求|MA|2+|MB|2+|MC|2+|MD|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)f(x)是R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x+3x-b(b為常數(shù)),則f(-2)=-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)同時(shí)滿足條件:①$\frac{{{b_n}+{b_{n+2}}}}{2}$≥bn+1;②bn≤M(n∈N*,M是常數(shù))的無窮數(shù)列{bn}叫做P數(shù)列,已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=$\frac{a}{a-1}$(an-1)(a為常數(shù),且a≠0,a≠1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{{2{S_n}}}{a_n}$+1,若數(shù)列{bn}為等比數(shù)列,求a的值;并證明數(shù)列{$\frac{1}{b_n}$}為P數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.(lg2)2+0.064${\;}^{-\frac{1}{3}}$+lg5lg20=( 。
A.0.4B.2.5C.1D.3.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)=x2+bx+c(b,c∈R,b<0).
(1)若f(x)的定義域?yàn)閇0,1]時(shí),值域也是[0,1],求b,c的值;
(2)若b=-2時(shí),若函數(shù)g(x)=$\frac{f(x)}{x}$對(duì)任意x∈[3,5],g(x)>c恒成立,試求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)為奇函數(shù),且在(0,+∞)上是遞增的,若f(-3)=0,則xf(x)>0的解集是(  )
A.{x|-3<x<0或x>3}B.{ x|x<-3或0<x<3}C.{ x|x<-3或x>3}D.{ x|-3<x<0或0<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知?jiǎng)狱c(diǎn)P與雙曲線$\frac{y^2}{9}$-$\frac{x^2}{16}$=1的兩個(gè)焦點(diǎn)F1,F(xiàn)2所連線段的和為6$\sqrt{5}$,
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)若$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$=0,求點(diǎn)P的坐標(biāo);
(3)求角∠F1PF2余弦值的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案