給出下面結論:
①命題p:“?x∈R,x2-3x+2≥0”的否定為?p:“?x∈R,x2-3x+2<0”;
②命題:“?x∈M,P(x)”的否定為:“?x∈M,P(x)”;
③若?p是q的必要條件,則p是?q的充分條件;
④“M>N”是“㏒aM>㏒aN”的充分不必要條件.
其中正確結論的個數(shù)為


  1. A.
    4
  2. B.
    3
  3. C.
    2
  4. D.
    1
C
分析:命題p:“?x∈R,x2-3x+2≥0”的否定為?p:“?x∈R,x2-3x+2<0”;命題:“?x∈M,P(x)”的否定為:“?x∈M,¬P(x)”;由?p是q的必要條件,知q?¬p,p?¬q,故p是?q的充分條件;“M>N”是“㏒aM>㏒aN”的不充分不必要條件.
解答:命題p:“?x∈R,x2-3x+2≥0”的否定為?p:“?x∈R,x2-3x+2<0”,故①正確;
命題:“?x∈M,P(x)”的否定為:“?x∈M,¬P(x)”,故②不正確;
∵?p是q的必要條件,∴q?¬p,
∴p?¬q,故p是?q的充分條件,故③正確;
“M>N”是“㏒aM>㏒aN”的不充分不必要條件,故④不正確.
故選C.
點評:本題考查命題的真假判斷,是基礎題.解題時要認真審題,仔細解答,注意合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•信陽模擬)給出下面結論:
①命題p:“?x∈R,x2-3x+2≥0”的否定為?p:“?x∈R,x2-3x+2<0”;
②命題:“?x∈M,P(x)”的否定為:“?x∈M,P(x)”; 
③若?p是q的必要條件,則p是?q的充分條件; 
④“M>N”是“㏒aM>㏒aN”的充分不必要條件.
其中正確結論的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下面結論:
①命題p:“?x0∈R,x
 
2
0
-3x0+2≥0”的否定為¬p:“?x∈R,x2-3x+2<0”
②函數(shù)f(x)=2x+3x的零點所在區(qū)間是(-1,0);
③函數(shù)y=sin2x的圖象向左平移
π
3
個單位后,得到函數(shù)y=sin(2x+
π
3
)
圖象;
④對于直線m,n和平面α,若m⊥α,m⊥n,則n∥α.
其中正確結論的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省汕頭市高三(上)期末數(shù)學試卷(文科)(解析版) 題型:選擇題

給出下面結論:
①命題p:“?x∈R,x-3x+2≥0”的否定為¬p:“?x∈R,x2-3x+2<0”
②函數(shù)f(x)=2x+3x的零點所在區(qū)間是(-1,0);
③函數(shù)y=sin2x的圖象向左平移個單位后,得到函數(shù)圖象;
④對于直線m,n和平面α,若m⊥α,m⊥n,則n∥α.
其中正確結論的個數(shù)是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源:2012年河南省信陽市高三第二次調研數(shù)學試卷(理科)(解析版) 題型:選擇題

給出下面結論:
①命題p:“?x∈R,x2-3x+2≥0”的否定為¬p:“?x∈R,x2-3x+2<0”;
②命題:“?x∈M,P(x)”的否定為:“?x∈M,P(x)”; 
③若¬p是q的必要條件,則p是¬q的充分條件; 
④“M>N”是“㏒aM>㏒aN”的充分不必要條件.
其中正確結論的個數(shù)為( )
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學 來源:2012年安徽師大附中高考數(shù)學四模試卷(理科)(解析版) 題型:選擇題

給出下面結論:
①命題p:“?x∈R,x2-3x+2≥0”的否定為¬p:“?x∈R,x2-3x+2<0”;
②命題:“?x∈M,P(x)”的否定為:“?x∈M,P(x)”; 
③若¬p是q的必要條件,則p是¬q的充分條件; 
④“M>N”是“㏒aM>㏒aN”的充分不必要條件.
其中正確結論的個數(shù)為( )
A.4
B.3
C.2
D.1

查看答案和解析>>

同步練習冊答案