已知向量
a
=(1,2),
b
=(-2,m),m∈R.
(Ⅰ)若
a
b
,求m的值;
(Ⅱ)若
a
b
,求m的值.
分析:(I)利用向量共線的坐標(biāo)表示即可得出;
(II)利用
a
b
?
a
b
=0,即可得出.
解答:解(Ⅰ)因為
a
b
,
所以1•m-2(-2)=0,m=-4.
(Ⅱ)因為
a
b
,所以
a
b
=0,
所以1•(-2)+2m=0,m=1.
點評:熟練掌握向量共線與垂直的坐標(biāo)表示是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知向量
a
=(-1,2),又點A(8,0),B(n,t),C(ksinθ,t)(0≤θ≤
π
2
)

(1)若
AB
a
,且|
AB
|=
5
|
OA
|(O
為坐標(biāo)原點),求向量
OB
;
(2)若向量
AC
與向量
a
共線,當(dāng)k>4,且tsinθ取最大值4時,求
OA
OC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(2,x)如果
a
b
所成的角為銳角,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(x,-2)且
a
b
,則實數(shù)x等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)y=tan(3x-
π
2
)
的最小正周期是
π
3

②角α終邊上一點P(-3a,4a),且a≠0,那么cosα=-
3
5

③函數(shù)y=cos(2x-
π
3
)
的圖象的一個對稱中心是(-
π
12
,0)

④已知向量
a
=(1,2),
b
=(1,0),
c
=(3,4).若λ為實數(shù),且(
a
b
)∥
c
,則λ=2
⑤設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時,f(x)=2x2-x,則f(1)=-3
其中正確的個數(shù)有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(x,4),若|
b
|=2|
a
|,則x的值為
±2
±2

查看答案和解析>>

同步練習(xí)冊答案