曲線y=log2x在點(diǎn)x=1處的切線方程為:
 
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:求導(dǎo)函數(shù),可得切線的斜率,利用點(diǎn)斜式,可得切線方程.
解答: 解:∵y=log2x,
∴y′=
1
xln2
,
∴x=1時,y′=
1
ln2
,y=0,
∴曲線y=log2x在點(diǎn)x=1處的切線方程為y=
1
ln2
(x-1),即x-yln2-1=0.
故答案為:x-yln2-1=0.
點(diǎn)評:本題考查導(dǎo)數(shù)知識的運(yùn)用,考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2=4上到直線x+y-
2
=0的距離等于1的點(diǎn)有(  )個.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
sin2x+
2
cos2x,x∈R.
(1)求f(x)的最小正周期和遞減區(qū)間;
(2)若f(
α
2
-
π
8
)=
3
2
,α是第二象限的角,求sin2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中正確的是:
 

①函數(shù)y=x-
3
2
的定義域是{x|x≠0};
②方程x2+(a-3)x+a=0有一個正實(shí)根,一個負(fù)實(shí)根,則a<0;
③α是第二象限角,β是第一象限角,則α>β;
④函數(shù)y=loga(2x-5)-2,(a>0,且a≠1)恒過定點(diǎn)(3,-2);
⑤若3x+3-x=2
2
,則3x-3-x的值為2
⑥若定義在R上的函數(shù)f(x)滿足:對任意x1,x2∈R有f(x1-x2)=f(x1)-f(x2)+1,則f(x)-1為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個單位有職工160人,其中有業(yè)務(wù)員104人,管理人員32人,后勤服務(wù)人員24人,要從中抽取一個容量為20的樣本,用分層抽樣方法抽出樣本,則應(yīng)抽取管理人員的人數(shù)為
 
人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(
π
6
-θ)=
1
3
,則cos(
6
+θ)
+sin(
3
-θ)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)(3,4),且在x軸、y軸上的截距相等的直線的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校周四下午第五、六兩節(jié)是選修課時間,現(xiàn)有甲、乙、丙、丁四位教師可開課.已知甲、乙教師各自最多可以開設(shè)兩節(jié)課,丙、丁教師各自最多可以開設(shè)一節(jié)課.現(xiàn)要求第五、六兩節(jié)課中每節(jié)課恰有兩位教師開課(不必考慮教師所開課的班級和內(nèi)容),則不同的開課方案共有( 。┓N.
A、20B、19C、16D、15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=2x+1與曲線y=ln(x+a)相切,則a的值為
 

查看答案和解析>>

同步練習(xí)冊答案