(本小題滿(mǎn)分13分) 已知等差數(shù)列滿(mǎn)足:,的前n項(xiàng)和為

(Ⅰ)求通項(xiàng)公式及前n項(xiàng)和

(Ⅱ)令=(nN*),求數(shù)列的前n項(xiàng)和

 

【答案】

(Ⅰ)=;(Ⅱ)=。

【解析】

試題分析:(1)結(jié)合已知中的等差數(shù)列的項(xiàng)的關(guān)系式,聯(lián)立方程組得到其通項(xiàng)公式和前n項(xiàng)和。

(2)在第一問(wèn)的基礎(chǔ)上,得到bn的通項(xiàng)公式,進(jìn)而分析運(yùn)用裂項(xiàng)法得到。

解:(Ⅰ)設(shè)等差數(shù)列的公差為d,由已知可得

解得,……………2分,

所以;………4分

==………6分

(Ⅱ)由(Ⅰ)知,

所以===    ……10分

所以== 

即數(shù)列的前n項(xiàng)和=    ……13分

考點(diǎn):本試題主要考查了等差數(shù)列的通項(xiàng)公式以及前n項(xiàng)和的求解運(yùn)用。

點(diǎn)評(píng):解決該試題的關(guān)鍵是能得到等差數(shù)列的通項(xiàng)公式,然后求解新數(shù)列的通項(xiàng)公式,利用裂項(xiàng)的思想來(lái)得到求和。易錯(cuò)點(diǎn)就是裂項(xiàng)的準(zhǔn)確表示。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿(mǎn)分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標(biāo)系中,畫(huà)出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿(mǎn)分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對(duì)任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿(mǎn)分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿(mǎn)分13分)如圖,正三棱柱的所有棱長(zhǎng)都為2,的中點(diǎn)。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線(xiàn)所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來(lái)源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題

(本小題滿(mǎn)分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項(xiàng)和

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案