已知函數(shù)y=x2-bx+2(x∈(-∞,1))是單調(diào)函數(shù),則b的取值范圍是
 
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:二次函數(shù)圖象是拋物線,開口向上,對稱軸是x=
b
2
,又y=x2-bx+2(x∈(-∞,1))是單調(diào)函數(shù),進而構(gòu)造關(guān)于b的不等式,解不等式可得b的取值范圍.
解答: 解:∵函數(shù)y=x2-bx+2的對稱軸是x=
b
2
,
又∵函數(shù)y=x2-bx+2,(x∈(-∞,1))是單調(diào)函數(shù),
又∵函數(shù)圖象開口向上,
∴函數(shù)y=x2-bx+2(x∈(-∞,1))是單調(diào)減函數(shù),
∴1≤
b
2
,
∴b≥2,
∴b的取值范圍是[2,+∞).
故答案為:[2,+∞).
點評:本題考查二次函數(shù)的圖象特征、二次函數(shù)的單調(diào)性及單調(diào)區(qū)間,體現(xiàn)數(shù)形結(jié)合的數(shù)學思想.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知某山區(qū)小學有100名四年級學生,將全體四年級學生隨機按00~99編號,并且按編號順序平均分成10組.現(xiàn)要從中抽取10名學生,各組內(nèi)抽取的編號按依次增加10進行系統(tǒng)抽樣.
(1)若抽出的一個號碼為22,則此號碼所在的組數(shù)是多少?據(jù)此寫出所有被抽出學生的號碼;
(2)分別統(tǒng)計這10名學生的數(shù)學成績,獲得成績數(shù)據(jù)的莖葉圖如圖所示,求該樣本的方差;
(3)在(2)的條件下,從這10名學生中隨機抽取兩名成績不低于73分的學生,求被抽取到的兩名學生的成績之和不小于154分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點(0,4),離心率為
3
5

(1)求橢圓C的方程;
(2)求過點(3,0)且斜率為
4
5
的直線被橢圓所截得線段的中點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足
x-y+1≥0
x+y-2≥0
x≤2
,則目標函數(shù)z=x-3y的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

投擲兩顆相同的正方體骰子(骰子質(zhì)地均勻,且各個面上依次標有點數(shù)1、2、3、4、5、6)一次,則兩顆骰子向上點數(shù)之積等于6的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線l1:x+ay-1=0與l2:4x-2y+3=0垂直,則二項式(ax2-
1
x
)2
展開式中的x的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x),x∈R,
(1)y=f(x-2)與y-f(2-x)的圖象關(guān)于直線 x=2對稱;
(2)有下列4個命題:
①若f(1+2x)=f(1-2x),則f(x)的圖象關(guān)于直線x=1對稱;
②f(2x+5)=f(2x)則5是y=f(x)的周期;
③若f(x)為偶函數(shù),且f(2+x)=-f(x),則f(x)的圖象關(guān)于直線x=2對稱;
④若f(x)為奇函數(shù),且f(x)=f(-x-2),則f(x)的圖象關(guān)于直線x=1對稱.
其中正確的命題為_
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入如下四個函數(shù):
①f(x)=sinx,②f(x)=cosx,③f(x)=
1
x
,④f(x)=x2,
則輸出的函數(shù)是( 。
A、f(x)=sinx
B、f(x)=cosx
C、f(x)=
1
x
D、f(x)=x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
m+1
+y2=1
的兩個焦點是F1(-c,0),F(xiàn)2(c,0)(c>0).
(Ⅰ)若直線y=x+2與橢圓C有公共點,求m的取值范圍;
(Ⅱ)設E是(I)中直線與橢圓的一個公共點,求|EF1|+|EF2|取得最小值時,橢圓的方程;
(Ⅲ)已知斜率為k(k≠0)的直線l與(Ⅱ)中橢圓交于不同的兩點A,B,點Q滿足
AQ
=
QB
NQ
AB
=0
,其中N為橢圓的下頂點,求直線l在y軸上截距的取值范圍.

查看答案和解析>>

同步練習冊答案