(本小題滿分12分)
(注意:在試題卷上作答無效)
四棱錐
中,底面
為矩形,側(cè)面
底面
,
,
,
。
(Ⅰ)證明:
;
(Ⅱ)設(shè)
與平面
所成的角為
,求二面角
的大小。
(Ⅰ)證明見解析。
(Ⅱ)
(Ⅰ)由于
,取
,以
為原點(diǎn),建立直角坐標(biāo)系,
如圖所示,設(shè)
,則
(Ⅱ)因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140823/201408231339290781295.gif" style="vertical-align:middle;" />,
作
,又
,故有
,
,故所求
。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
如圖,在三棱柱
中,側(cè)面
底面ABC,
,
,且
為AC中點(diǎn)。
(I) 證明:
平面ABC;
(II) 求直線
與平面
所成角的正弦值;
(III) 在
上是否存在一點(diǎn)E,使得
平面
,若不存在,說明理由;若存在,確定點(diǎn)E的位置。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知三棱柱
中,側(cè)棱垂直于底面,底面△ABC中
,
點(diǎn)
是
的中點(diǎn)。
(1)求證:
(2)求證:
(3)求
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖3,在正三棱柱
中,
AB=4,
,點(diǎn)
D是
BC的中點(diǎn),
點(diǎn)
E在
AC上,且
DEE。
(Ⅰ)證明:平面
平面
;
(Ⅱ)求直線
AD和平面
所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
如圖,已知正方形ABCD和梯形ACEF所在的平面互相垂直,
,CE//AF,
(I)求證:CM//平面BDF;
(II)求異面直線CM與FD所成角的大;
(III)求二面角A—DF—B的大小。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,邊長為2的等邊△
PCD所在的平面垂直于矩形
ABCD所在的平面,
BC=
,
M為BC的中點(diǎn)
(Ⅰ)證明:
AM⊥
PM ;
(Ⅱ)求二面角
P-
AM-
D的大。
(Ⅲ)求點(diǎn)
D到平面
AMP的距離
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
長方體的長、寬、高分別為a,b,c,對角線長為
l,則下列結(jié)論正確的是
(所有正確的序號都寫上)。
(1)
;(2)
;(3)
;(4)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在直三棱柱ABC-A
1B
1C
1中,
E是BC的中點(diǎn)。
(1)求異面直線AE與A
1C所成的角;
(2)若G為C
1C上一點(diǎn),且EG⊥A
1C,試確定點(diǎn)G的位置;
(3)在(2)的條件下,求二面角A
1-AG-E的大小(文科求其正切值)。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知正方體
ABCD-
A1B1C1D1,
AD1與
A1D相交于點(diǎn)
O.(1)判斷
AD1與平面
A1B1CD的位置關(guān)系,并證明;
(2)求直線
AB1與平面
A1B1CD所成的角.
查看答案和解析>>