【題目】如圖所示:在五面體ABCDEF中,四邊形EDCF是正方形,AD=DE=1,∠ADE=90°,∠ADC=∠DCB=120°.

(Ⅰ)求證:平面ABCD⊥平面EDCF;

(Ⅱ)求三棱錐A-BDF的體積.

【答案】(1)見解析:(2)

【解析】

(1)推導(dǎo)出AD⊥DE,CD⊥DE,從而DE⊥平面ABCD,由此能證明平面ABCD⊥平面EDCF,(2)三棱錐A﹣BDF的體積VA﹣BDF=VF﹣ABD,由此能求出結(jié)果.

(1)證明:∵在五面體ABCDEF中,四邊形EDCF是正方形,∠ADE=90°,

∴AD⊥DE,CD⊥DE,

∵AD∩CD=D,∴DE⊥平面ABCD,

∵DE平面EDCF,∴平面ABCD⊥平面EDCF.

(2) 由(1)知DE⊥平面,所以平面. 等腰三角形

又DC∥EF,平面ABFE,平面ABFE,所以DC∥平面ABFE.

又平面ABCD∩平面ABFE=AB,故AB∥CD.所以四邊形為等腰梯形.又AD=DE,所以AD=CD=CB,由,在等腰中由余弦定理得BD=ADBD,所以三棱錐的體積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下四個(gè)命題中真命題的序號(hào)是( .

①平面內(nèi)到兩定點(diǎn)距離之比等于常數(shù)的點(diǎn)的軌跡是圓;

②平面內(nèi)與定點(diǎn)A-3,0)和B3,0)的距離之差等于4的點(diǎn)的軌跡為;

③點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Px軸上的射影是M,點(diǎn)A的坐標(biāo)是,則的最小值是

④已知P為拋物線上一個(gè)動(dòng)點(diǎn),Q為圓上一個(gè)動(dòng)點(diǎn),那么點(diǎn)P到點(diǎn)Q的距離與點(diǎn)P到拋物線的準(zhǔn)線距離之和的最小值是

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將編號(hào)為1、2、3、4的四個(gè)小球隨機(jī)的放入編號(hào)為1、2、3、4的四個(gè)紙箱中,每個(gè)紙箱有且只有一個(gè)小球,稱此為一輪“放球”.設(shè)一輪“放球”后編號(hào)為的紙箱放入的小球編號(hào)為,定義吻合度誤差為

(1) 寫出吻合度誤差的可能值集合;

(2) 假設(shè)等可能地為1,2,3,4的各種排列,求吻合度誤差的分布列;

(3)某人連續(xù)進(jìn)行了四輪“放球”,若都滿足,試按(Ⅱ)中的結(jié)果,計(jì)算出現(xiàn)這種現(xiàn)象的概率(假定各輪“放球”相互獨(dú)立);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)求曲線的直角坐標(biāo)方程及曲線上的動(dòng)點(diǎn)到坐標(biāo)原點(diǎn)的距離的最大值;

(Ⅱ)若曲線與曲線相交于,兩點(diǎn),且與軸相交于點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)綠色出行,某市在推出“共享單車”后,又推出“新能源租賃汽車”.每次租車收費(fèi)的標(biāo)準(zhǔn)由兩部分組成:里程計(jì)費(fèi):1元/公里;時(shí)間計(jì)費(fèi):元/分.已知陳先生的家離上班公司公里,每天上、下班租用該款汽車各一次.一次路上開車所用的時(shí)間記為(分),現(xiàn)統(tǒng)計(jì)了50次路上開車所用時(shí)間,在各時(shí)間段內(nèi)頻數(shù)分布情況如下表所示

將各時(shí)間段發(fā)生的頻率視為概率,一次路上開車所用的時(shí)間視為用車時(shí)間,范圍為分.

(1)估計(jì)陳先生一次租用新能源租賃汽車所用的時(shí)間不低于分鐘的概率;

(2)若公司每月發(fā)放元的交通補(bǔ)助費(fèi)用,請(qǐng)估計(jì)是否足夠讓陳先生一個(gè)月上下班租用新能源租賃汽車(每月按天計(jì)算),并說明理由.(同一時(shí)段,用該區(qū)間的中點(diǎn)值作代表)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了莖葉圖:則下列結(jié)論中表述不正確的是

A. 第一種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務(wù)所需要的時(shí)間至少80分鐘

B. 第二種生產(chǎn)方式比第一種生產(chǎn)方式的效率更高

C. 這40名工人完成任務(wù)所需時(shí)間的中位數(shù)為80

D. 無論哪種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)平均所需要的時(shí)間都是80分鐘.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),e是自然對(duì)數(shù)的底,

(1)討論的單調(diào)性;

(2)若,是函數(shù)的零點(diǎn),的導(dǎo)函數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,曲線C由部分橢圓C1=1a>b>0,y≥0和部分拋物線C2:y=-x2+1y≤0連接而成,C1與C2的公共點(diǎn)為A,B,其中C1所在橢圓的離心率為

1求a,b的值;

2過點(diǎn)B的直l與C1,C2分別交于點(diǎn)P,QP,Q,A,B中任意兩點(diǎn)均不重合,若AP⊥AQ,求直線l

的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的焦距為短半軸的長(zhǎng)為2,過點(diǎn)P(-2,1)且斜率為1的直線l與橢圓C交于AB兩點(diǎn)

(1)求橢圓C的方程;

(2)求弦AB的長(zhǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案