奇函數(shù)f(x)、偶函數(shù)g(x)的圖象分別如圖1、2所示,方程f(g(x))=0、g(f(x))=0的實(shí)根個(gè)數(shù)分別為a、b,則a+b=( )

A.14
B.10
C.7
D.3
【答案】分析:先利用奇函數(shù)和偶函數(shù)的圖象性質(zhì)判斷兩函數(shù)的圖象,再利用圖象由外到內(nèi)分別解方程即可得兩方程解的個(gè)數(shù),最后求和即可
解答:解:由圖可知,圖1為f(x)圖象,圖2為g(x)的圖象,m∈(-2,-1),n∈(1,2)
∴方程f(g(x))=0?g(x)=-1或g(x)=0或g(x)=1?x=-1,x=1,x=m,x=0,x=n,x=-2,x=2,∴方程f(g(x))=0有7個(gè)根,即a=7;
而方程g(f(x))=0?f(x)=a或f(x)=0或f(x)=b?f(x)=0?x=-1,x=0,x=1,∴方程g(f(x))=0 有3個(gè)根,即b=3
∴a+b=10
故選 B
點(diǎn)評:本題主要考查了函數(shù)奇偶性的圖象性質(zhì),利用函數(shù)圖象解方程的方法,數(shù)形結(jié)合的思想方法,屬基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)函f(x)=x|x|-2x  (x∈R)
(1)判斷函數(shù)的奇偶性,并用定義證明;
(2)作出函數(shù)f(x)=x|x|-2x的圖象;
(3)討論方程x|x|-2x=a根的情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•寶山區(qū)二模)已知f(x)=
10x+a10x+1
是奇函數(shù).
(1)求a的值;
(2)求f(x)的反函 數(shù) f-1(x),判斷f-1(x)的奇偶性,并給予證明;
(3)若函數(shù)y=F(x)是以2為周期的奇函數(shù),當(dāng)x∈(-1,0)時(shí),F(xiàn)(x)=f-1(x),求x∈(2,3)時(shí)F(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下表為函數(shù)f(x)=ax3+cx+d部分自變量取值及其對應(yīng)函數(shù)值,為了便于研究,相關(guān)函數(shù)值取非整數(shù)值時(shí),取值精確到0.01.
x -0.61 -0.59 -0.56 -0.35 0 0.26 0.42 1.57 3.27
y 0.07 0.02 -0.03 -0.22 0 0.21 0.20 -10.04 -101.63
根據(jù)表中數(shù)據(jù),研究該函數(shù)的一些性質(zhì):
(1)判斷f(x)的奇偶性,并證明;
(2)判斷f(x)在[0.55,0.6]上是否存在零點(diǎn),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)函f(x)=x|x|-2x (x∈R)
(1)判斷函數(shù)的奇偶性,并用定義證明;
(2)作出函數(shù)f(x)=x|x|-2x的圖象;
(3)討論方程x|x|-2x=a根的情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)=數(shù)學(xué)公式是奇函數(shù).
(1)求a的值;
(2)求f(x)的反函 數(shù) f-1(x),判斷f-1(x)的奇偶性,并給予證明;
(3)若函數(shù)y=F(x)是以2為周期的奇函數(shù),當(dāng)x∈(-1,0)時(shí),F(xiàn)(x)=f-1(x),求x∈(2,3)時(shí)F(x)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案