9.已知函數(shù)f(x)=ax3+bx2的圖象經(jīng)過(guò)點(diǎn)A(1,3),且函數(shù)f(x)在x=-$\frac{4}{3}$處取得極值.
(1)求實(shí)數(shù)a,b的值;
(2)求函數(shù)f(x)在[-1,2]的最大值和最小值.

分析 (1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于a,b的方程組,求出a,b的值即可;
(2)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)在閉區(qū)間上的最值即可.

解答 解:(1)f′(x)=3ax2+2bx,
由題意得$\left\{\begin{array}{l}{f(1)=a+b=3}\\{f′(-\frac{4}{3})=3{a(-\frac{4}{3})}^{2}+2b(-\frac{4}{3})=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=1}\\{b=2}\end{array}\right.$;
(2)由(1)知f(x)=x3+2x2
∴f′(x)=x(3x+4),
令f′(x)>0,解得:x>0或x<-$\frac{4}{3}$,
令f′(x)<0,解得:-$\frac{4}{3}$<x<0,
故函數(shù)f(x)在[-1,0]上單調(diào)遞減,在[0,2]上單調(diào)遞增,
∵f(-1)=1,f(2)=16,
∴f(x)min=f(0)=0,f(x)max=f(2)=16.

點(diǎn)評(píng) 本題考查了切線方程問(wèn)題,考查函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.為了調(diào)查甲網(wǎng)站受歡迎的程度,隨機(jī)選取了13天,統(tǒng)計(jì)上午8:00-10:00間的點(diǎn)擊量,得如圖所示的統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖計(jì)算極差和中位數(shù)分別是( 。
A.22   13B.22   12C.23   13D.23  12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知點(diǎn)P(x0,y0) 和點(diǎn) A(3,4)在直線l:3x+2y-8=0的異側(cè),則(  )
A.3x0+2y0>0B.3x0+2y0<0C.3x0+2y0<8D.3x0+2y0>8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在5個(gè)球中有3個(gè)紅球,2個(gè)白球(各不相同),不放回的依次摸出2個(gè)球,則在第一次摸出紅球的條件下,第2次也摸出紅球的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{lnx-a}{x}$-m,(a,m∈R)在x=e(e為自然對(duì)數(shù)的底)時(shí)取得極值且有兩個(gè)零點(diǎn).
(1)求實(shí)數(shù)m的取值范圍;
(2)記函數(shù)f(x)的兩個(gè)零點(diǎn)為x1,x2,證明x1x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.$\frac{{\sqrt{3}tan10°+1}}{{({4{{cos}^2}10°-2})sin10°}}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.當(dāng)0<x≤$\frac{1}{4}$時(shí),16x<logax,則a的取值范圍是(  )
A.$(0,\frac{1}{2})$B.$(\frac{1}{2},1)$C.$(1,\sqrt{2})$D.$(\frac{{\sqrt{2}}}{2},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=sin(x+$\frac{π}{6}$),其中x∈[-$\frac{π}{3}$,a],若f(x)的值域是[-$\frac{1}{2}$,1],則cosα的取值范圍是( 。
A.$[\frac{1}{2},1)$B.$[{-1,\frac{1}{2}}]$C.$[{0,\frac{1}{2}}]$D.$[{-\frac{1}{2},0}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.方程ax2+ay2-4(a-1)x+4y=0表示圓,則實(shí)數(shù)a的取值范圍( 。
A.RB.(-∞,0)∪(0,+∞)C.(0,+∞)D.(1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案