已知函數(shù)f(x)=x3+ax-2,(aR).
(l)若f(x)在區(qū)間(1,+)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若,且f(x0)=3,求x0的值;
(3)若,且在R上是減函數(shù),求實(shí)數(shù)a的取值范圍。
(1)的取值范圍是;(2),或;(3).

試題分析:(1)求導(dǎo)得:,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032305504447.png" style="vertical-align:middle;" />在區(qū)間上是增函數(shù),所以上恒成立,即恒成立,只需大于等于的最大值即可;
(2),即.分段函數(shù)求值就分情況分別求.
(3)上是減函數(shù),則兩段都遞減且時(shí)兩段的端點(diǎn)重合,由此即可求出的取值范圍.
試題解析:(1),在區(qū)間上是增函數(shù),所以,在上恒成立,恒成立,所以,的取值范圍是       4分
(2)    即 
,即
所以,或.                  9分
(3)上是減函數(shù),所以
解之得.                       13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

上海某化學(xué)試劑廠以x千克/小時(shí)的速度生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求),為了保證產(chǎn)品的質(zhì)量,需要一邊生產(chǎn)一邊運(yùn)輸,這樣按照目前的市場價(jià)格,每小時(shí)可獲得利潤是元.
(1)要使生產(chǎn)運(yùn)輸該產(chǎn)品2小時(shí)獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產(chǎn)運(yùn)輸900千克該產(chǎn)品獲得的利潤最大,問:該工廠應(yīng)該選取何種生產(chǎn)速度?并求最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)在區(qū)間上有最大值,求實(shí)數(shù)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),若函數(shù)為奇函數(shù),求的值.
(2)若,有唯一實(shí)數(shù)解,求的取值范圍.
(3)若,則是否存在實(shí)數(shù),使得函數(shù)的定義域和值域都為。若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,有一直角墻角,兩邊的長度足夠長,在P處有一棵樹與兩墻的距離分別
、4m,不考慮樹的粗細(xì),現(xiàn)在用16m長的籬笆, 借助墻角圍成一個矩形的共圃ABCD,設(shè)此矩形花圃的面積為Sm2,S的最大值為,若將這棵樹圍在花圃中,則函數(shù)的圖象大致是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中,在R上單調(diào)遞增的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)與函數(shù)的圖像所有交點(diǎn)的橫坐標(biāo)之和為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的圖象可能是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

定義在上的函數(shù)的單調(diào)增區(qū)間為,若方程恰有6個不同的實(shí)根,則實(shí)數(shù)的取值范圍是         .

查看答案和解析>>

同步練習(xí)冊答案