△ABC的兩個(gè)頂點(diǎn)為A(-4,0),B(4,0),△ABC周長(zhǎng)為18,則C點(diǎn)軌跡為(    )

A.(y≠0)                     B.(y≠0)

C.(y≠0)                     D.(y≠0)

 

【答案】

A

【解析】

試題分析:由題意可得CB+AC=10>BA,故頂點(diǎn)C的軌跡是以B、A為焦點(diǎn)的橢圓,除去與x軸的交點(diǎn),利用橢圓的定義和,簡(jiǎn)單性質(zhì) 求出a、b 的值,即得頂點(diǎn)A的軌跡方程.即可知∴2a=10,c=4∴b=3,故頂點(diǎn)C的軌跡方程為,(y≠0),故選A.

考點(diǎn):橢圓的定義

點(diǎn)評(píng):本題考查橢圓的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,注意軌跡方程中y≠0,這是解題的易錯(cuò)點(diǎn).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以等腰直角△ABC的兩個(gè)頂點(diǎn)為焦點(diǎn),并且經(jīng)過另一頂點(diǎn)的橢圓的離心率為(  )
A、
2
2
B、
3
2
C、
2
2
2
-1
D、
2
2
3
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以等腰直角△ABC的兩個(gè)頂點(diǎn)為焦點(diǎn),且經(jīng)過第三個(gè)頂點(diǎn)的雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的兩個(gè)頂點(diǎn)為B(-2,0),C(2,0),周長(zhǎng)為12.
(1)求頂點(diǎn)A的軌跡G方程;
(2)若直線y=
12
x
與點(diǎn)A的軌跡G交于M、N兩點(diǎn),求△BMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浙江模擬)在直角坐標(biāo)平面中,△ABC的兩個(gè)頂點(diǎn)為A(0,-1),B(0,1)平面內(nèi)兩點(diǎn)G、M同時(shí)滿足①
GA
+
GB
+
GC
=
0
,②|
MA
|
=|
MB
|
=|
MC
|
,③
GM
AB

(1)求頂點(diǎn)C的軌跡E的方程
(2)設(shè)P、Q、R、N都在曲線E上,定點(diǎn)F的坐標(biāo)為(
2
,0),已知
PF
FQ
,
RF
FN
PF
RF
=0.求四邊形PRQN面積S的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面中,△ABC的兩個(gè)頂點(diǎn)為A(0,-l),B(0,1),平面內(nèi)兩點(diǎn)G,M同時(shí)滿足:①
OC
=3
OG
(O為坐標(biāo)原點(diǎn));②|
MA
|=|
MB
|=|
MC
|
;③
GM
AB

(1)求頂點(diǎn)C的軌跡E的方程;
(2)直線l:y=x+t與曲線E交于P,Q兩點(diǎn),求四邊形PAQB面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案