在△ABC中,邊a,b,c所對的角分別為A,B,C,已知(b+c):(c+a):(a+b)=4:5:6,若b+c=8,則△ABC的面積是
 
分析:由題中的條件先求出a,b,c 的值,再由余弦定理求出A=120°,根據(jù)△ABC的面積是
1
2
×bc•sinA運算求得結果.
解答:解:∵(b+c):(c+a):(a+b)=4:5:6,若b+c=8,∴c+a=10,a+b=12,
∴a=7,b=5,c=3,由余弦定理可得 49=25+9-30cosA,∴cosA=-
1
2
,∴A=120°,
則△ABC的面積是
1
2
×bcsinA=
15
3
4
,
故答案為:
15
3
4
點評:本題考查余弦定理的應用,根據(jù)三角函數(shù)的值求角,求三角形的面積,求出A=120°,是解題的難點.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,邊a,b,c分別為角A,B,C的對邊,若
m
=(sin2
B+C
2
,1)
,
n
=(cos2A+
7
2
,4)
m
n
.

(1)求角A的度數(shù);
(2)若a=
3
,b+c=3
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,邊a,b,c所對應的角為A,B,C,B為銳角,sinAsinB=
BC
2AC

(Ⅰ)求角B的值;
(Ⅱ)若cosA=-
5
5
,求sin(2A+B)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•濟南一模)在△ABC中,邊a、b、c分別是角A、B、C的對邊,且滿足bcosC=(3a-c)cosB.
(1)求cosB;
(2)若
BC
BA
=4,b=4
2
,求邊a,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,邊a,b,c的對角分別為A.B、C,且sin2A+sin2C-sinA•sinC=sin2B
(1)求角B的值;
(2)求2cos2A+cos(A-C)的范圍.

查看答案和解析>>

同步練習冊答案