1.如圖,三棱柱ABC-A1B1C1的各條棱長均為2,且側(cè)棱垂直于底面,則二面角C1-AB-C的正切值為$\frac{2\sqrt{3}}{3}$.

分析 連接AC1,BC1,在平面AC1B內(nèi)過C1作C1D⊥AB于D,連接CD,由題意可得∠C1DC是二面角C1-AB-C的平面角,然后通過求解直角三角形得答案.

解答 解:如圖,
連接AC1,BC1,在平面AC1B內(nèi)過C1作C1D⊥AB于D,連接CD,
∵三棱柱ABC-A1B1C1的各棱長都相等,且C1C⊥平面ABC,
則AC1=BC1,∴C1D⊥AB,CD⊥AB,
則∠C1DC是二面角C1-AB-C的平面角,
在正三角形ABC中,∵BC=2,BD=1,∴CD=$\sqrt{3}$,
∴tan$∠{C}_{1}CD=\frac{{C}_{1}C}{CD}=\frac{2}{\sqrt{3}}=\frac{2\sqrt{3}}{3}$.
故答案為:$\frac{2\sqrt{3}}{3}$.

點評 本題考查二面角的平面角的求法,正確找出二面角的平面角是解答此題的關(guān)鍵,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=2lnx-ax.
(1)若曲線f(x)在點(1,f(1))處的切線過點(2,0),求a的值;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知AB=AD=2,BC=2BD=2$\sqrt{3}$,求sinC的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知x,y,z∈R,且x+3y-2z=3,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$-…+$\frac{{x}^{2013}}{2013}$-$\frac{{x}^{2014}}{2014}$+$\frac{{x}^{2015}}{2015}$,則下列結(jié)論正確的是( 。
A.f(x)在(0,1)上恰有一個零點B.f(x)在(0,1)上恰有兩個零點
C.f(x)在(-1,0)上恰有一個零點D.f(x)在(-1,0)上恰有兩個零點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=ex(x2+2ax+b)在x=-1處取得極大值t,則t的取值范圍是( 。
A.($\frac{2}{e}$,+∞)B.(-∞,$\frac{2}{e}$)C.(-$\frac{2}{e}$,+∞)D.(-∞,-$\frac{2}{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知a>0,且a≠1,解關(guān)于x的不等式2loga(x-3)>logax2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=(ax-2)ex在x=1處取得極值.
(1)求a的值;
(2)求證:對任意x1、x2∈[0,2],都有|f(x1)-f(x2)|≤e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.當(dāng)x∈(0,+∞)時,函數(shù)f(x)=$\frac{x}{e^x}$的值域為$(0,\frac{1}{e}]$.

查看答案和解析>>

同步練習(xí)冊答案