【題目】隨著科技的發(fā)展,網(wǎng)絡(luò)已逐漸融入了人們的生活.網(wǎng)購(gòu)是非常方便的購(gòu)物方式,為了了解網(wǎng)購(gòu)在我市的普及情況,某調(diào)查機(jī)構(gòu)進(jìn)行了有關(guān)網(wǎng)購(gòu)的調(diào)查問卷,并從參與調(diào)查的市民中隨機(jī)抽取了男女各100人進(jìn)行分析,從而得到表(單位:人)

經(jīng)常網(wǎng)購(gòu)

偶爾或不用網(wǎng)購(gòu)

合計(jì)

男性

50

100

女性

70

100

合計(jì)

(1)完成上表,并根據(jù)以上數(shù)據(jù)判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為我市市民網(wǎng)購(gòu)與性別有關(guān)?

(2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再?gòu)倪@10人中隨機(jī)選取3人贈(zèng)送優(yōu)惠券,求選取的3人中至少有2人經(jīng)常網(wǎng)購(gòu)的概率;

②將頻率視為概率,從我市所有參與調(diào)查的市民中隨機(jī)抽取10人贈(zèng)送禮品,記其中經(jīng)常網(wǎng)購(gòu)的人數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望和方差.

參考公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(Ⅰ)詳見解析;(Ⅱ);數(shù)學(xué)期望為6,方差為2.4.

【解析】

1)完成列聯(lián)表,由列聯(lián)表,得,由此能在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為我市市民網(wǎng)購(gòu)與性別有關(guān).

2由題意所抽取的10名女市民中,經(jīng)常網(wǎng)購(gòu)的有人,偶爾或不用網(wǎng)購(gòu)的有人,由此能選取的3人中至少有2人經(jīng)常網(wǎng)購(gòu)的概率.

列聯(lián)表可知,抽到經(jīng)常網(wǎng)購(gòu)的市民的頻率為:,由題意,由此能求出隨機(jī)變量的數(shù)學(xué)期望和方差

解:(1)完成列聯(lián)表(單位:人):

經(jīng)常網(wǎng)購(gòu)

偶爾或不用網(wǎng)購(gòu)

合計(jì)

男性

50

50

100

女性

70

30

100

合計(jì)

120

80

200

由列聯(lián)表,得:

能在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為我市市民網(wǎng)購(gòu)與性別有關(guān).

2)①由題意所抽取的10名女市民中,經(jīng)常網(wǎng)購(gòu)的有人,

偶爾或不用網(wǎng)購(gòu)的有人,

選取的3人中至少有2人經(jīng)常網(wǎng)購(gòu)的概率為:

② 由列聯(lián)表可知,抽到經(jīng)常網(wǎng)購(gòu)的市民的頻率為:

將頻率視為概率,

從我市市民中任意抽取一人,恰好抽到經(jīng)常網(wǎng)購(gòu)市民的概率為0.6,

由題意

隨機(jī)變量的數(shù)學(xué)期望,

方差DX=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓與橢圓的離心率相同.

(1)求的值;

(2)過橢圓的左頂點(diǎn)作直線,交橢圓于另一點(diǎn),交橢圓兩點(diǎn)(點(diǎn)之間).①求面積的最大值(為坐標(biāo)原點(diǎn));②設(shè)的中點(diǎn)為,橢圓的右頂點(diǎn)為,直線與直線的交點(diǎn)為,試探究點(diǎn)是否在某一條定直線上運(yùn)動(dòng),若是,求出該直線方程;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中嘗試進(jìn)行課堂改革.現(xiàn)高一有兩個(gè)成績(jī)相當(dāng)?shù)陌嗉?jí),其中班級(jí)參與改革,班級(jí)沒有參與改革.經(jīng)過一段時(shí)間,對(duì)學(xué)生學(xué)習(xí)效果進(jìn)行檢測(cè),規(guī)定成績(jī)提高超過分的為進(jìn)步明顯,得到如下列聯(lián)表.

進(jìn)步明顯

進(jìn)步不明顯

合計(jì)

班級(jí)

班級(jí)

合計(jì)

(1)是否有的把握認(rèn)為成績(jī)進(jìn)步是否明顯與課堂是否改革有關(guān)?

(2)按照分層抽樣的方式從班中進(jìn)步明顯的學(xué)生中抽取人做進(jìn)一步調(diào)查,然后從人中抽人進(jìn)行座談,求這人來自不同班級(jí)的概率.

附:,當(dāng)時(shí),有的把握說事件有關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)的性質(zhì)描述,正確的是__________.的定義域?yàn)?/span>;②的值域?yàn)?/span>;③的圖象關(guān)于原點(diǎn)對(duì)稱;④在定義域上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為常數(shù),且).

(1)若當(dāng)時(shí),函數(shù)的圖象有且只要一個(gè)交點(diǎn),試確定自然數(shù)的值,使得(參考數(shù)值,,);

(2)當(dāng)時(shí),證明:(其中為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)統(tǒng)計(jì),某蔬菜基地西紅柿畝產(chǎn)量的增加量(百千克)與某種液體肥料每畝使用量(千克)之間的對(duì)應(yīng)數(shù)據(jù)的散點(diǎn)圖,如圖所示.

(1)依據(jù)數(shù)據(jù)的散點(diǎn)圖可以看出,可用線性回歸模型擬合的關(guān)系,請(qǐng)計(jì)算相關(guān)系數(shù)并加以說明(若,則線性相關(guān)程度很高,可用線性回歸模型擬合);

(2)求關(guān)于的回歸方程,并預(yù)測(cè)液體肥料每畝使用量為12千克時(shí),西紅柿畝產(chǎn)量的增加量約為多少?

附:相關(guān)系數(shù)公式,參考數(shù)據(jù):,.

回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(Ⅰ)解不等式:

(Ⅱ)當(dāng)時(shí),函數(shù)的圖象與軸圍成一個(gè)三角形,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí), .

1)直接寫出函數(shù)的增區(qū)間(不需要證明);

(2)求出函數(shù), 的解析式;

3)若函數(shù), 求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

討論的單調(diào)性.

,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案