設(shè)是定義在R上的奇函數(shù),當(dāng),則= ( )
A.—3 B.—1 C.1 D.3
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省東莞市高三模擬(一)文科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)函數(shù)的導(dǎo)函數(shù)為,對任意都有成立,則( 。
A. B.
C. D. 與的大小不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省青島市高三4月統(tǒng)一質(zhì)量檢測考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
拋物線的焦點(diǎn)坐標(biāo)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省高三12月月考理科數(shù)學(xué)試卷(解析版) 題型:填空題
已知函數(shù)的定義域[-1,5],部分對應(yīng)值如表,的導(dǎo)函數(shù)的圖象如圖所示,下列關(guān)于函數(shù)的命題;
x | -1 | 0 | 2 | 4 | 5 |
F(x) | 1 | 2 | 1.5 | 2 | 1 |
①函數(shù)的值域?yàn)椋?,2];
②函數(shù)在[0,2]上是減函數(shù);
③如果當(dāng)時(shí),的最大值是2,那么t的最大值為4;
④當(dāng)時(shí),函數(shù)最多有4個(gè)零點(diǎn).
其中正確命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省高三12月月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知是的一個(gè)零點(diǎn),,則 ( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省高三12月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ<)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省高三12月月考文科數(shù)學(xué)試卷(解析版) 題型:填空題
設(shè)等比數(shù)列的前項(xiàng)和為,若=3,則=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省菏澤市高三3月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
為了倡導(dǎo)健康、低碳、綠色的生活理念,某市建立了公共自行車服務(wù)系統(tǒng)鼓勵(lì)市民租用公共自行車出行公共自行車按每車每次的租用時(shí)間進(jìn)行收費(fèi),具體收費(fèi)標(biāo)準(zhǔn)如下:
①租用時(shí)間不超過1小時(shí),免費(fèi);
②租用時(shí)間為1小時(shí)以上且不超過2小時(shí),收費(fèi)1元;
③租用時(shí)間為2小時(shí)以上且不超過3小時(shí),收費(fèi)2元;
④租用時(shí)間超過3小時(shí)的時(shí)段,按每小時(shí)2元收費(fèi)(不足1小時(shí)的部分按1小時(shí)計(jì)算)已知甲、乙兩人獨(dú)立出行,各租用公共自行車一次,兩人租車時(shí)間都不會(huì)超過3小時(shí),設(shè)甲、乙租用時(shí)間不超過1小時(shí)的概率分別是0.4和0.5 ,租用時(shí)間為1小時(shí)以上且不超過2小時(shí)的概率分別是0.5和0.3.
(1)求甲、乙兩人所付租車費(fèi)相同的概率;
(2)設(shè)甲、乙兩人所付租車費(fèi)之和為隨機(jī)變量,求的分布列和數(shù)學(xué)期望E
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省煙臺市高三統(tǒng)一質(zhì)量檢測考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知平行四邊形ABCD中,AB=6,AD=10,BD=8,E是線段AD的中點(diǎn).沿直線BD將△BCD翻折成△BCD,使得平面BCD平面ABD.
(1)求證:C'D平面ABD;
(2)求直線BD與平面BEC'所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com