等差數(shù)列{an}中,a3+a5+a7+a9+a11=20,則a8-
1
2
a9
=( 。
分析:由條件可得5a1+30d=20,從而有a1+6d=4,再由 a8-
1
2
a9
=
1
2
(a1+6d),運算求得結(jié)果.
解答:解:設(shè)公差為d,∵a3+a5+a7+a9+a11=20,故有 a1+2d+a1+4d+a1+6d+a1+8d+a1+10d=20,
即 5a1+30d=20,a1+6d=4.
a8-
1
2
a9
=
1
2
(a1+6d)=2,
故選B.
點評:本題主要考查等差數(shù)列的定義和性質(zhì),等差數(shù)列的通項公式,求出a1+6d=6,是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中,a1=-4,且a1、a3、a2成等比數(shù)列,使{an}的前n項和Sn<0時,n的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列﹛an﹜中,a3=5,a15=41,則公差d=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)項和S2n-1=38,則n等于(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,設(shè)S1=10,S2=20,則S10的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)在等差數(shù)列{an}中,d=2,a15=-10,求a1及Sn;
(2)在等比數(shù)列{an}中,a3=
3
2
S3=
9
2
,求a1及q.

查看答案和解析>>

同步練習冊答案