函數(shù)f(x)=在R上連續(xù),則直線ax+y+1=0的傾斜角為( )
A.a(chǎn)rctan2
B.π-arctan2
C.a(chǎn)rctan(-2)
D.π+arctan2
【答案】分析:由連續(xù)函數(shù)的性質(zhì)求得a值,從而得到直線ax+y+1=0的斜率,進(jìn)而得到直線的傾斜角.
解答:解:∵函數(shù)f(x)=在R上連續(xù),∴a=1+1=2,
直線ax+y+1=0的斜率為-2,設(shè)直線ax+y+1=0的傾斜角為α,則 0≤α<π,且tanα=-2,
∴α=π-arctan2,
故選 B.
點評:本題考查連續(xù)函數(shù)的性質(zhì),直線的傾斜角和斜率的關(guān)系,以及傾斜角的取值范圍,已知三角函數(shù)值求角的大。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)定義在R上,f(0)≠0,且對于任意a,b∈R,都有f(a+b)+f(a-b)=2f(a)f(b).
(1)求證:f(x)為偶函數(shù);
(2)若存在正數(shù)m使f(m)=0,求證:f(x)為周期函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)是在R上的偶函數(shù),且在[0,+∞)時,函數(shù)f(x)單調(diào)遞減,則不等式f(1)-f(
1
x
)<0
的解集是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•長寧區(qū)一模)已知函數(shù)f(x)定義在R上,存在反函數(shù),且f(9)=18,若y=f(x+1)的反函數(shù)是y=f-1(x+1),則f(2008)=
-1981
-1981

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•虹口區(qū)二模)定義域為D的函數(shù)f(x),如果對于區(qū)間I內(nèi)(I⊆D)的任意兩個數(shù)x1、x2都有f(
x1+x2
2
)≥
1
2
[f(x1)+f(x2)]
成立,則稱此函數(shù)在區(qū)間I上是“凸函數(shù)”.
(1)判斷函數(shù)f(x)=lgx在R+上是否是“凸函數(shù)”,并證明你的結(jié)論;
(2)如果函數(shù)f(x)=x2+
a
x
1,2
上是“凸函數(shù)”,求實數(shù)a的取值范圍;
(3)對于區(qū)間
c,d
上的“凸函數(shù)”f(x),在
c,d
上任取x1,x2,x3,…,xn
①證明:當(dāng)n=2k(k∈N*)時,f(
x1+x2+…+xn
n
)≥
1
n
[f(x1)+f(x2)+…+f(xn)]
成立;
②請再選一個與①不同的且大于1的整數(shù)n,
證明:f(
x1+x2+…+xn
n
)≥
1
n
[f(x1)+f(x2)+…+f(xn)]
也成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•虹口區(qū)二模)定義域為D的函數(shù)f(x),如果對于區(qū)間I內(nèi)(I⊆D)的任意兩個數(shù)x1、x2都有f(
x1+x2
2
)≥
1
2
[f(x1)+f(x2)]
成立,則稱此函數(shù)在區(qū)間I上是“凸函數(shù)”.
(1)判斷函數(shù)f(x)=-x2在R上是否是“凸函數(shù)”,并證明你的結(jié)論;
(2)如果函數(shù)f(x)=x2+
a
x
在區(qū)間[1,2]上是“凸函數(shù)”,求實數(shù)a的取值范圍;
(3)對于區(qū)間[c,d]上的“凸函數(shù)”f(x),在[c,d]上的任取x1,x2,x3,…,x2n,證明:f(
x1+x2+…+x2n
2n
)≥
1
2n
[f(x1)+f(x2)+…+f(x2n)]

查看答案和解析>>

同步練習(xí)冊答案