分析 (1)通過設(shè)A站對P城市的凈化效果為y1、比例系數(shù)為k1,利用y1=$\frac{{a•k}_{1}}{x}$可知y1=$\frac{a}{4x}$,同理y2=$\frac{1-a}{4(1-x)}$,進而可得結(jié)論;
(2)通過變形、利用基本不等式可知f(x)min=$\frac{1}{4}$[1+2$\sqrt{a(1-a)}$]≥$\frac{1}{2}$,進而計算可得結(jié)論.
解答 解:(1)設(shè)A站對P城市的凈化效果為y1,
比例系數(shù)為k1,則y1=$\frac{{a•k}_{1}}{x}$,
由題意x=$\frac{3}{4}$,y1=$\frac{a}{3}$,即$\frac{a}{3}$=$\frac{a•{k}_{1}}{\frac{3}{4}}$,
∴k1=$\frac{1}{4}$,∴y1=$\frac{a}{4x}$;
設(shè)B站對P城市的凈化效果為y2,則y2=k2•$\frac{1-a}{1-x}$,
由x=$\frac{3}{4}$,y2=1-a可知k2=$\frac{1}{4}$,
∴y2=$\frac{1-a}{4(1-x)}$;
∴A、B兩站對該城市的總凈化效果f(x)為:f(x)=y1+y2=$\frac{a}{4x}$+$\frac{1-a}{4(1-x)}$,x∈(0,1);
(2)由題可知:f(x)≥$\frac{1}{2}$對任意x∈(0,1)恒成立,
只需x∈(0,1)時f(x)min≥$\frac{1}{2}$即可.
又∵$\frac{a}{4x}$+$\frac{1-a}{4(1-x)}$=$\frac{1}{4}$($\frac{a}{x}$+$\frac{1-a}{1-x}$)[x+(1-x)]
=$\frac{1}{4}$[1+$\frac{a(1-x)}{x}$+$\frac{(1-a)x}{1-x}$]
≥$\frac{1}{4}$[1+2$\sqrt{\frac{a(1-x)}{x}•\frac{(1-a)x}{1-x}}$]
=$\frac{1}{4}$[1+2$\sqrt{a(1-a)}$],
當且僅當$\frac{a(1-x)}{x}$=$\frac{(1-a)x}{1-x}$即$\frac{1}{x}$=1+$\sqrt{\frac{1}{a}-1}$時取等號,
∴f(x)min=$\frac{1}{4}$[1+2$\sqrt{a(1-a)}$],
又∵$\frac{1}{4}$[1+2$\sqrt{a(1-a)}$]≥$\frac{1}{2}$,
∴$(a-\frac{1}{2})^{2}$≤0,即a=$\frac{1}{2}$,
綜上所述,滿足條件的a的取值集合為{$\frac{1}{2}$}.
點評 本題考查函數(shù)模型的選擇與應(yīng)用,考查分析問題、解決問題的能力,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $-\frac{{\sqrt{3}}}{3}$ | C. | 0 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,2) | B. | (-∞,$\frac{13}{8}$] | C. | (-∞,2] | D. | [$\frac{13}{8}$,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com