【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點,且PA=AD.

(1)求證:PB∥平面AEC;
(2)求證:AE⊥平面PCD;
(3)設(shè)二面角D﹣AE﹣C為60°,且AP=1,求D到平面AEC的距離.

【答案】
(1)證明:連接BD交AC于O點,則O為BD的中點,連結(jié)OE,

∵E為PD的中點,∴PB∥OE

又∵OE平面AEC,PB平面AEC

∴PB∥平面AEC;


(2)證明:(幾何法):∵PA⊥平面ABCD,

∴PA⊥AD,PA⊥CD

∴在直角△PAD中,PA=ADE為PD的中點,

∴AE⊥PD

又∵底面ABCD為矩形,∴AD⊥CD,

∵PA∩AD=A,∴CD⊥平面PAD

∵AE平面PAD,∴AE⊥CD,∵PD∩CD=D,

∴AE⊥平面PCD.

(向量法):由題知 四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,

如圖以A點為原點,以AB,AD,AP所在直線分別為x,y,z軸,建立空間坐標(biāo)系A(chǔ)﹣xyz

設(shè)AB=a,AD=b,則

∴AE⊥DC,AE⊥DP,

∵DP∩DC=D,∴AE⊥平面PCD


(3)解:由(2)知平面DAE的法向量是 ,

∵AP=1,∴ ,

,

設(shè)平面AEC的法向量是 ,

,

,令z=1,得 ,∴

,

解得

,

∴D到平面AEC的距離


【解析】(1)連接BD交AC于O點,則O為BD的中點,從而PB∥OE,由此能證明PB∥平面AEC.(2)(幾何法):推導(dǎo)出PA⊥AD,PA⊥CD,從而AE⊥PD,再推導(dǎo)出AD⊥CD,從而CD⊥平面PAD,進(jìn)而AE⊥CD,由此能證明AE⊥平面PCD.(2)(向量法):以A點為原點,以AB,AD,AP所在直線分別為x,y,z軸,建立空間坐標(biāo)系A(chǔ)﹣xyz,利用向量法能證明AE⊥平面PCD.(3)求出平面DAE的法向量和平面AEC的法向量,利用向量法能求出D到平面AEC的距離.
【考點精析】根據(jù)題目的已知條件,利用直線與平面平行的判定和直線與平面垂直的判定的相關(guān)知識可以得到問題的答案,需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A、B、C的對邊分別為a、b、c.已知A﹣C=90°,a+c= b,求C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,橢圓短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為
(1)求橢圓C的方程;
(2)已知動直線y=k(x+1)與橢圓C相交于A、B兩點.
①若線段AB中點的橫坐標(biāo)為﹣ ,求斜率k的值;
②若點M(﹣ ,0),求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知p:{x|x≥﹣2},q:{x|x<3},請寫出滿足下列條件的x的集合:
(1)p∧q為真;
(2)p真q假;
(3)p假q真.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: 過點A(2,3),且F(2,0)為其右焦點.
(1)求橢圓C的方程;
(2)是否存在于行于OA的直線l,使得直線l與橢圓C有公共點,且直線OA與l的距離等于 ?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某村投資128萬元建起了一處生態(tài)采摘園,預(yù)計在經(jīng)營過程中,第一年支出10萬元,以后每年支出都比上一年增加4萬元,從第一年起每年的銷售收入都為76萬元.設(shè)y表示前n(n∈N*)年的純利潤總和(利潤總和=經(jīng)營總收入﹣經(jīng)營總支出﹣投資).
(1)該生態(tài)園從第幾年開始盈利?
(2)該生態(tài)園前幾年的年平均利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列選項中,說法正確的是(
A.已知命題p和q,若“p∨q”為假命題,則命題p和q中必一真一假
B.命題“?c∈R,方程2x2+y2=c表示橢圓”的否定是“?c∈R,方程2x2+y2=c不表示橢圓”
C.命題“若k<9,則方程“ + =1表示雙曲線”是假命題
D.命題“在△ABC中,若sinA< ,則A< ”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正三棱錐P﹣ABC中,D,E分別是AB,BC的中點.
(1)求證:DE∥平面PAC;
(2)求證:AB⊥PC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0且a≠1,設(shè)
命題p:函數(shù)y=logax在區(qū)間(0,+∞)內(nèi)單調(diào)遞減;
q:曲線y=x2+(2a﹣3)x+1與x軸有兩個不同的交點,
如果p∧q為真命題,試求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案