已知函數(shù)f(x)=x2+alnx.
(1)當(dāng)a=-2e時(shí),求函數(shù)f(x)的單調(diào)區(qū)間和極值.
(2)若函數(shù)g(x)=f(x)+
2x
在[1,4]上是減函數(shù),求實(shí)數(shù)a的取值范圍.
分析:(1)a=-2e時(shí),f′(x)=2x-
2e
x
=
2(x-
e
)(x+
e
)
x
,利用x變化時(shí),f'(x),f(x)的變化情況可求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)由g(x)=x2+alnx+
2
x
,得g′(x)=2x+
a
x
-
2
x2
,由g'(x)≤0在[1,4]上恒成立,可得a≤
2
x
-2x2在[1,4]上恒成立.構(gòu)造函數(shù)φ(x)=
2
x
-2x2,求其最小值即可.
解答:解:(1)函數(shù)f(x)的定義域?yàn)椋?,+∞).
當(dāng)a=-2e時(shí),f′(x)=2x-
2e
x
=
2(x-
e
)(x+
e
)
x
(2分),
當(dāng)x變化時(shí),f'(x),f(x)的變化情況如下:
x (0,
e
)
e
(
e
,+∞)
f'(x) - 0 +
f(x) 極小值
∴f(x)的單調(diào)遞減區(qū)間是(0,
e
);單調(diào)遞增區(qū)間是(
e
,+∞).
極小值是f(
e
)=0.(6分)
(2)由g(x)=x2+alnx+
2
x
,得g′(x)=2x+
a
x
-
2
x2
(8分)
又函數(shù)g(x)=x2+alnx+
2
x
為[1,4]上的單調(diào)減函數(shù).
則g'(x)≤0在[1,4]上恒成立,
所以不等式2x+
a
x
-
2
x2
≤0在[1,4]上恒成立,
即a≤
2
x
-2x2在[1,4]上恒成立.     (10分)
設(shè)φ(x)=
2
x
-2x2,顯然?(x)在[1,4]上為減函數(shù),
所以?(x)的最小值為?(4)=-
63
2

∴a的取值范圍是a≤-
63
2
.(12分)
點(diǎn)評(píng):本題考查利用倒數(shù)研究函數(shù)的單調(diào)性,著重考查函數(shù)在某點(diǎn)取得極值的條件,考查閉區(qū)間上的恒成立問(wèn)題,突出轉(zhuǎn)化思想與構(gòu)造函數(shù)的思想的運(yùn)用,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案