(I)解:令x
1=x
2=0,由f(x
1+x
2)≥f(x
1)+f(x
2)-2,則f(0)≥2f(0)-2,∴f(0)≤2.
由對任意x∈[0,1],總有f(x)≥2,∴f(0)≥2,故f(0)=2;
(II)對任意x
1,x
2∈[0,1]且x
1<x
2,則0<x
2-x
1≤1,∴f(x
2-x
1)≥2,
∴f(x
2)=f(x
2-x
1+x
1)≥f(x
2-x
1)+f(x
1)-2≥f(x
1),
∴f
max(x)=f(1)=3;
(III)∵
①,
∴
②,
①-②得:
,
由
,得:
,解得a
1=1.
∵a
1=1≠0,∴
(n≥2),
∴
.
∴
∴
,即
.
所以
=
=
=
.
故
∴
=
.
即原不等式式成立.
分析:(Ⅰ)取特值x
1=x
2=0,代入f(x
1+x
2)≥f(x
1)+f(x
2)-2后可求得f(0)≤2,又對任意x∈[0,1],總有f(x)≥2,由此可得f(0)=2;
(Ⅱ)在[0,1]內(nèi)任取兩個(gè)值x
1,x
2,規(guī)定x
1<x
2后,由f(x
1+x
2)≥f(x
1)+f(x
2)-2推出f(x
2)≥f(x
1),由此可得f(x)的最大值為3;
(Ⅲ)由數(shù)列{a
n}的前n項(xiàng)和求出數(shù)列的通項(xiàng)公式
,把
轉(zhuǎn)化為
,然后代入f(x
1+x
2)≥f(x
1)+f(x
2)-2,變形整理后得即
,循環(huán)放大得到
,代入求證的不等式左邊化簡即可.
點(diǎn)評:本題考查了數(shù)列的函數(shù)特性,考查了數(shù)列的和,訓(xùn)練了利用放縮法求證不等式,考查了學(xué)生靈活處理問題的能力和計(jì)算能力,是難度較大的題目.