樣本點(diǎn)的樣本中心與回歸直線的關(guān)系(  )

A.在直線上         B.在直線左上方      C.在直線右下方      D.在直線外

 

【答案】

A

【解析】

試題分析:根據(jù)線性回歸方程可知,樣本點(diǎn)的樣本中心與回歸直線的關(guān)系,由于,兩式聯(lián)立可知

樣本中心點(diǎn)在直線上,故選A.

考點(diǎn):回歸直線

點(diǎn)評:回歸直線方程必定過樣本中心點(diǎn),屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南)設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為
y
=0.85x-85.71,則下列結(jié)論中不正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列五個命題中正確命題的個數(shù)是( 。
(1)對于命題P:?x∈R,使得x2+x+1<0,則¬P:?x∈R,均有x2+x+1>0;
(2)m=3是直線(m+3)x+my-2=0與直線mx-6y+5=0互相垂直的充要條件;
(3)已知回歸直線的斜率的估計值為1.23,樣本點(diǎn)的中心為(4,5),則回歸直線方程為
y
=1.23x+0.08;
(4)若實(shí)數(shù)x,y∈[-1,1],則滿足x2+y2≥1的概率為
π
4
;
(5)曲線y=x2與y=x所圍成圖形的面積是S=∫
 
1
0
(x-x2)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為
?
y
=0.85x-85.71,給定下列結(jié)論:
①y與x具有正的線性相關(guān)關(guān)系;
②回歸直線過樣本點(diǎn)的中心(
.
x
.
y
);
③若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg;
④若該大學(xué)某女生身高為170cm,則可斷定其體重必為58.79kg.
其中正確的結(jié)論是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(湖南卷解析版) 題型:選擇題

設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A、y與x具有正的線性相關(guān)關(guān)系

B、回歸直線過樣本點(diǎn)的中心(

C、若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

D、若該大學(xué)某女生身高為170cm,則可斷定其體重必為58.79kg

 

查看答案和解析>>

同步練習(xí)冊答案