若橢圓的點(diǎn)到左焦點(diǎn)的距離大于它到右準(zhǔn)線的距離,則橢圓離心率e的取值范圍是           .
解:假設(shè)這個(gè)點(diǎn)為P點(diǎn),F(xiàn)為左焦點(diǎn),PH為P到右準(zhǔn)線的距離,
則:|PF|=a+ea/ 3 ,|PH|=a2 /c -a /3 ="a" /e -a /3由于:PF>PH,所以:a+ea /3 >a /e -a /3 ,e2+4e-3>0,
解得:e> -2,
所以 -2<e<1.
故答案為(  -2,1)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知橢圓,過中心O作互相垂直的線段OA、OB與橢圓交于A、B, 求:
(1)的值
(2)判定直線AB與圓的位置關(guān)系
(文科)(3)求面積的最小值
(理科)(3)求面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線的極坐標(biāo)方程是ρ=2,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系
(1) 寫出曲線的直角坐標(biāo)方程;
(2)若把上各點(diǎn)的坐標(biāo)經(jīng)過伸縮變換后得到曲線,求曲線上任意一點(diǎn)到兩坐標(biāo)軸距離之積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的右焦點(diǎn)為,點(diǎn)在圓上任意一點(diǎn)(點(diǎn)第一象限內(nèi)),過點(diǎn)作圓的切線交橢圓于兩點(diǎn)、
(1)證明:;
(2)若橢圓離心率為,求線段長(zhǎng)度的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線l:與橢圓相交A,B兩點(diǎn),點(diǎn)C是橢圓上的動(dòng)點(diǎn),則面積的最大值為              。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)已知橢圓,設(shè)該橢圓上的點(diǎn)到左焦點(diǎn)的最大距離為,到右頂點(diǎn)的最大距離為.
(Ⅰ) 若,,求橢圓的方程;
(Ⅱ) 設(shè)該橢圓上的點(diǎn)到上頂點(diǎn)的最大距離為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)點(diǎn)是橢圓上一點(diǎn),分別是橢圓的左、右焦點(diǎn),的內(nèi)心,若,則該橢圓的離心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓的左、右焦點(diǎn)分別為,線段被拋物線的焦點(diǎn)F分成5:3兩段,則橢圓的離心率為 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)F1、F2為曲線C1+ =1的焦點(diǎn),P是曲線與C1的一個(gè)交點(diǎn),則△PF1F2的面積為_____________

查看答案和解析>>

同步練習(xí)冊(cè)答案