已知函數(shù)f(x)=x(x-a)2,g(x)=-x2+(a-1)x+a(其中a為常數(shù));
(1)如果函數(shù)y=f(x)和y=g(x)有相同的極值點,求a的值;
(2)設(shè)a>0,問是否存在,使得f(x)>g(x),若存在,請求出實數(shù)a的取值范圍;若不存在,請說明理由.
【答案】分析:(1)分別求出y=f(x)和y=g(x)的極值點,根據(jù)條件建立等量關(guān)系,解方程即可;
(2)假設(shè)存在,即存在x∈(-1,),使得f(x)-g(x)>0,只需研究f(x)-g(x)的符號,討論對稱軸與區(qū)間的位置關(guān)系即可求出實數(shù)a的取值范圍.
解答:解:(1)f(x)=x(x-a)2=x3-2ax2+a2x,
則f′(x)=3x2-4ax+a2=(3x-a)(x-a),
令f′(x)=0,得x=a或,
而g(x)在x=處有極大值,
=a⇒a=-1,或=⇒a=3;
綜上:a=3或a=-1.
(2)假設(shè)存在,即存在x∈(-1,),
使得f(x)-g(x)=x(x-a)2-[-x2+(a-1)x+a]
=x(x-a)2+(x-a)(x+1)
=(x-a)[x2+(1-a)x+1]>0,
當(dāng)x∈(-1,)時,又a>0,故x-a<0,
則存在x∈(-1,),使得x2+(1-a)x+1<0,
1°當(dāng)即a>3時,得a>3或,
∴a>3;
2°當(dāng)即0<a≤3時,
得a<-1或a>3,
∴a無解;綜上:a>3.
點評:本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的極值,以及函數(shù)零點的判定定理,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案