【題目】已知橢圓 的離心率 ,過點A(0,﹣b)和B(a,0)的直線與原點的距離為 .
(1)求橢圓的方程;
(2)已知定點E(﹣1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點,問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.
【答案】
(1)解:直線AB方程為bx﹣ay﹣ab=0,
依題意可得: ,
解得:a2=3,b=1,
∴橢圓的方程為
(2)解:假設(shè)存在這樣的值.
,
得(1+3k2)x2+12kx+9=0,
∴△=(12k)2﹣36(1+3k2)>0…①,
設(shè)C(x1,y1),D(x2,y2),
則
而y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4,
要使以CD為直徑的圓過點E(﹣1,0),
當且僅當CE⊥DE時,
則y1y2+(x1+1)(x2+1)=0,
∴(k2+1)x1x2+(2k+1)(x1+x2)+5=0…③
將②代入③整理得k= ,
經(jīng)驗證k= 使得①成立綜上可知,存在k= 使得以CD為直徑的圓過點E
【解析】(1)直線AB方程為bx﹣ay﹣ab=0,依題意可得: ,由此能求出橢圓的方程.(2)假設(shè)存在這樣的值. ,得(1+3k2)x2+12kx+9=0,再由根的判別式和根與系數(shù)的關(guān)系進行求解.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l:y=ax+1﹣a(a∈R).若存在實數(shù)a使得一條曲線與直線l有兩個不同的交點,且以這兩個交點為端點的線段長度恰好等于|a|,則稱此曲線為直線l的“絕對曲線”.下面給出四條曲線方程:①y=﹣2|x﹣1|;②y=x2;③(x﹣1)2+(y﹣1)2=1;④x2+3y2=4;則其中直線l的“絕對曲線”有( )
A.①④
B.②③
C.②④
D.②③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某生態(tài)公園的平面圖呈長方形(如圖),已知生態(tài)公園的長AB=8(km),寬AD=4(km),M,N分別為長方形ABCD邊AD,DC的中點,P,Q為長方形ABCD邊AB,BC(不含端點)上的一點.現(xiàn)公園管理處擬修建觀光車道P﹣Q﹣N﹣M﹣P,要求觀光車道圍成四邊形(如圖陰影部分)的面積為15(km2),設(shè)BP=x(km),BQ=y(km),
(1)試寫出y關(guān)于x的函數(shù)關(guān)系式,并求出x的取值范圍;
(2)若B為公園入口,P,Q為觀光車站,觀光車站P位于線段AB靠近入口B的一側(cè).經(jīng)測算,每天由B入口至觀光車站P,Q乘坐觀光車的游客數(shù)量相等,均為1萬人,問如何確定觀光車站P,Q的位置,使所有游客步行距離之和最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的單調(diào)區(qū)間和極值;
(2)是否存在實數(shù),使得函數(shù)在上的最小值為1?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l的方程為(2﹣m)x+(2m+1)y+3m+4=0,其中m∈R.
(1)求證:直線l恒過定點;
(2)當m變化時,求點P(3,1)到直線l的距離的最大值;
(3)若直線l分別與x軸、y軸的負半軸交于A,B兩點,求△AOB面積的最小值及此時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)= x2+ax﹣lnx(a∈R)
(1)當a=1時,求函數(shù)f(x)的極值;
求實數(shù)m的取值范圍.
(2)當a≥2時,討論函數(shù)f(x)的單調(diào)性;
(3)若對任意a∈(2,3)及任意x1 , x2∈[1,2],恒有ma+ln2>|f(x1)﹣f(x2)|成立,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的各項均為正數(shù),記數(shù)列{an}的前n項和為Sn,數(shù)列{an2}的前n項和為Tn,且3Tn=Sn2+2Sn,n∈N*.
(Ⅰ)求a1的值;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)若k,t∈N*,且S1,Sk-S1,St-Sk成等比數(shù)列,求k和t的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在圓內(nèi)接△ABC,A,B,C所對的邊分別為a,b,c,滿足acosC+ccosA=2bcosB.
(1)求B的大。
(2)若點D是劣弧 上一點,AB=3,BC=2,AD=1,求四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中, , , 的面積為.
(Ⅰ)求的長;
(Ⅱ)若函數(shù)的圖象經(jīng)過三點,其中為的圖象與軸相鄰的兩個交點,求函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com