(2012•成都一模)在用數(shù)學(xué)歸納法證明f(n)=++…+<1(n∈N*,n≥3)的過程中:假設(shè)當(dāng)n=k(k∈N*,k≥3)時,不等式f(k)<1成立,則需證當(dāng)n=k+1時,f(k+1)<1也成立.若f(k+1)=f(k)+g(k),則g(k)=( )

A.+ B.+ C. D.

 

B

【解析】

試題分析:根據(jù)f(n)=++…+,可知f(k)=+…+,f(k+1)=+…+,從而可得n=k到n=k+1變化了的項.

【解析】
∵f(k)=+…+,f(k+1)=+…+

∴f(k+1)﹣f(k)=

∵f(k+1)=f(k)+g(k),

∴g(k)=

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-6 1.2最大公因數(shù)與最小公倍數(shù) 題型:填空題

已知7163=209×34+57,209=57×3+38,57=38×1+19,38=19×2.根據(jù)上述系列等式,確定7163和209的最大公約數(shù)是 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 4.2數(shù)學(xué)歸納法證明不等式舉例(解析版) 題型:解答題

用數(shù)學(xué)歸納法證明不等式:+++…+>1(n∈N*且n>1).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 4.1數(shù)學(xué)歸納法練習(xí)卷(解析版) 題型:選擇題

用數(shù)學(xué)歸納法證明“當(dāng)n為正奇數(shù)時,xn+yn能被x+y整除”,第二步歸納假設(shè)應(yīng)寫成( )

A.假設(shè)n=2k+1(k∈N*)正確,再推n=2k+3正確

B.假設(shè)n=2k﹣1(k∈N*)正確,再推n=2k+1正確

C.假設(shè)n=k(k∈N*)正確,再推n=k+1正確

D.假設(shè)n=k(k≥1)正確,再推n=k+2正確

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 4.1數(shù)學(xué)歸納法練習(xí)卷(解析版) 題型:選擇題

利用數(shù)學(xué)歸納法證明“(n+1)(n+2)…(n+n)=2n×1×3×…×(2n﹣1),n∈N*”時,從“n=k”變到“n=k+1”時,左邊應(yīng)增乘的因式是( )

A.2k+1 B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 3.3排序不等式練習(xí)卷(解析版) 題型:解答題

設(shè)a,b,c為正數(shù),利用排序不等式證明a3+b3+c3≥3abc.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 3.2一般形式柯西不等式練習(xí)卷(解析版) 題型:填空題

(2014•宿遷模擬)已知實數(shù)a1,a2,a3不全為零,正數(shù)x,y滿足x+y=2,設(shè)的最大值為M=f(x,y),則M的最小值為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 3.1二維形式柯西不等式練習(xí)卷(解析版) 題型:選擇題

已知x,y均為正數(shù),θ∈(,),且滿足=+=,則的值為( )

A.2 B.1 C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 2.2綜合法與分析法練習(xí)卷(解析版) 題型:選擇題

數(shù)學(xué)中的綜合法是( )

A.由結(jié)果追溯到產(chǎn)生原因的思維方法

B.由原因推導(dǎo)到結(jié)果的思維方法

C.由反例說明結(jié)果不成立的思維方法

D.由特例推導(dǎo)到一般的思維方法

 

查看答案和解析>>

同步練習(xí)冊答案