如圖甲,△ABC是邊長(zhǎng)為6的等邊三角形,E,D分別為AB、AC靠近B、C的三等分點(diǎn),點(diǎn)G為BC邊的中點(diǎn).線段AG交線段ED于F點(diǎn),將△AED沿ED翻折,使平面AED⊥平面BCDE,連接AB、AC、AG形成如圖乙所示的幾何體。

(1)求證BC⊥平面AFG;
(2)求二面角B-AE-D的余弦值.

(1)詳見解析, (2)

解析試題分析:(1)折疊問(wèn)題,首先要明確折疊前后量的變化,尤其是垂直條件的變化,本題要證明線面垂直,首先找線線垂直,折疊前后都有條件,而折疊后直線變?yōu)閮蓷l相交直線,因此可由線面垂直判定定理得到BC⊥平面AFG ,(2)求二面角,有兩個(gè)方法,一是作出二面角的平面角,二是利用空間向量計(jì)算;本題易建立空間直角坐標(biāo)系,較易表示各點(diǎn)坐標(biāo),因此選擇利用空間向量求二面角.下面的關(guān)鍵是求出兩個(gè)平面的法向量,平面ADE的一個(gè)法向量易求,而平面ABE的一個(gè)法向量則需列方程組求解,最后利用數(shù)量積求夾角的余弦值
試題解析:(1) 在圖甲中,由△ABC是等邊三角形,E,D分別為AB,AC的三等分點(diǎn),點(diǎn)G為BC邊的中點(diǎn),易知DE⊥AF,DE⊥GF,DE//BC.            2分
在圖乙中,因?yàn)镈E⊥AF,DE⊥GF,AFFG=F,所以DE⊥平面AFG.
又DE//BC,所以BC⊥平面AFG.                    4分
(2) 因?yàn)槠矫鍭ED⊥平面BCDE,平面AED平面BCDE=DE,DE⊥AF,DE⊥GF,所以FA,F(xiàn)D,F(xiàn)G兩兩垂直.
以點(diǎn)F為坐標(biāo)原點(diǎn),分別以FG,F(xiàn)D,F(xiàn)A所在的直線為軸,建立如圖所示的空間直角坐標(biāo)系

,,,所以0).              6分
設(shè)平面ABE的一個(gè)法向量為
,即,
,則,,則.            8分
顯然為平面ADE的一個(gè)法向量,
所以.                  10分
二面角為鈍角,所以二面角的余弦值為.   12分
考點(diǎn):線面垂直判定,空間向量求二面角

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在直角梯形ABCP中,,D是AP的中點(diǎn),E,G分別為PC,CB的中點(diǎn),將三角形PCD沿CD折起,使得PD垂直平面ABCD.(1)若F是PD的中點(diǎn),求證:AP平面EFG;(2)當(dāng)二面角G-EF-D的大小為時(shí),求FG與平面PBC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在長(zhǎng)方體ABCD-A1B1C1D1中,AB=AD=2,AA1=a,E,F(xiàn)分別為AD,CD的中點(diǎn).

(1)若AC1⊥D1F,求a的值;
(2)若a=2,求二面角E-FD1-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,底面,且底面為正方形,分別為的中點(diǎn).

(1)求證:平面;
(2)求平面和平面的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,在多面體ABCD-A1B1C1D1中,上、下兩個(gè)底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB∥A1B1,AB=2A1B1=2DD1=2a.

(1)求異面直線AB1與DD1所成角的余弦值;
(2)已知F是AD的中點(diǎn),求證:FB1⊥平面BCC1B1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,三棱柱中,△ABC是正三角形,,平面平面.

(1)證明:;
(2)證明:求二面角的余弦值;
(3)設(shè)點(diǎn)是平面內(nèi)的動(dòng)點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在直三棱柱ABCA1B1C1中,D,E分別是AB,BB1的中點(diǎn),AA1ACCBAB.
 
(1)證明:BC1∥平面A1CD;
(2)求二面角DA1CE的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2.

(Ⅰ)求異面直線EF與BC所成角的大;
(Ⅱ)若二面角A-BF-D的平面角的余弦值為,求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知正四棱錐P-ABCD的所有棱長(zhǎng)都是2,底面正方形兩條對(duì)角線相交于O點(diǎn),M是側(cè)棱PC的中點(diǎn).

(1)求此正四棱錐的體積.
(2)求直線BM與側(cè)面PAB所成角θ的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案