【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得利潤分別為(萬元),它們與投入資金(萬元)的關(guān)系有如下公式:,,今將200萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對(duì)甲、乙兩種產(chǎn)品的投入資金都不低于25萬元.

(Ⅰ)設(shè)對(duì)乙種產(chǎn)品投入資金(萬元),求總利潤(萬元)關(guān)于的函數(shù)關(guān)系式及其定義域;

(Ⅱ)如何分配投入資金,才能使總利潤最大,并求出最大總利潤.

【答案】(Ⅰ)答案見解析;(Ⅱ)答案見解析.

【解析】分析:(Ⅰ)根據(jù)題意,對(duì)乙種商品投資(萬元),對(duì)甲種商品投資(萬元),結(jié)合題意可求經(jīng)營甲、乙兩種商品的總利潤(萬元)關(guān)于的函數(shù)表達(dá)式;(Ⅱ,利用配方法結(jié)合二次函數(shù)的性質(zhì)可求總利潤y的最大值.

詳解(Ⅰ)根據(jù)題意,對(duì)乙種產(chǎn)品投入資金萬元,

對(duì)甲種產(chǎn)品投入資金萬元,

那么

,解得,

所以函數(shù)的定義域?yàn)?/span>.

(Ⅱ)令,則

因?yàn)?/span>,所以,

當(dāng)時(shí)函數(shù)單調(diào)遞增,當(dāng)時(shí)函數(shù)單調(diào)遞減,

所以當(dāng)=時(shí),即=時(shí), ,

答:當(dāng)甲種產(chǎn)品投入資金萬元,乙種產(chǎn)品投入資金萬元時(shí),總利潤最大.

最大總利潤為萬元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,側(cè)棱AA1⊥底面ABCD,AB∥DC,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k,(k>0)

(1)求證:CD⊥平面ADD1A1
(2)若直線AA1與平面AB1C所成角的正弦值為 ,求k的值
(3)現(xiàn)將與四棱柱ABCD﹣A1B1C1D1形狀和大小完全相同的兩個(gè)四棱柱拼成一個(gè)新的四棱柱,規(guī)定:若拼成的新四棱柱形狀和大小完全相同,則視為同一種拼接方案,問共有幾種不同的拼接方案?在這些拼接成的新四棱柱中,記其中最小的表面積為f(k),寫出f(k)的解析式.(直接寫出答案,不必說明理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),兩定點(diǎn)A,B滿足| |=| |= =2,則點(diǎn)集{P| ,|λ|+|μ|≤1,λ,μ∈R}所表示的區(qū)域的面積是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的通項(xiàng)公式為an=則數(shù)列{an}中的最大項(xiàng)為(  )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fn(x)=﹣1+x+ + +…+ (x∈R,n∈N+),證明:
(1)對(duì)每個(gè)n∈N+ , 存在唯一的x∈[ ,1],滿足fn(xn)=0;
(2)對(duì)于任意p∈N+ , 由(1)中xn構(gòu)成數(shù)列{xn}滿足0<xn﹣xn+p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),,成立,求的取值范圍;

(Ⅲ)設(shè)曲線,點(diǎn)為該曲線上不同的兩點(diǎn).求證:當(dāng)時(shí),直線的斜率大于-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人輪流投籃,每人每次投一球.約定甲先投且先投中者獲勝,一直到有人獲勝或每人都已投球3次時(shí)投籃結(jié)束.設(shè)甲每次投籃投中的概率為 ,乙每次投籃投中的概率為 ,且各次投籃互不影響.
(1)求甲獲勝的概率;
(2)求投籃結(jié)束時(shí)甲的投籃次數(shù)ξ的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把函數(shù)y=cos2x+1的圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),然后向左平移1個(gè)單位長度,再向下平移1個(gè)單位長度,得到的圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的方程是).

(1)當(dāng),時(shí),求曲線圍成的區(qū)域的面積;

(2)若直線與曲線交于軸上方的兩點(diǎn),,且,求點(diǎn)到直線距離的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案