若函數(shù)f(x)=x2+(2m+3)|x|+1的定義域被分成了四個單調(diào)區(qū)間,則實數(shù)m的取值范圍( 。
A、m<-
3
2
B、m<-
5
2
或m>-
1
2
C、m>-
3
2
D、-
5
2
<m<-
1
2
分析:先將f(x)=x2+(2m+3)|x|+1看成是由函數(shù)f(x)=x2+(2m+3)x+1變化得到,再將二次函數(shù)配方,找到其對稱軸,明確單調(diào)性,再研究對稱軸的位置即可求解.
解答:解:f(x)=x2+(2m+3)|x|+1是由函數(shù)f(x)=x2+(2m+3)x+1變化得到,精英家教網(wǎng)
第一步保留y軸右側(cè)的圖象,再作關(guān)于y軸對稱的圖象.
因為定義域被分成四個單調(diào)區(qū)間,
所以f(x)=x2+(2m+3)x+1的對稱軸在y軸的右側(cè),使y軸右側(cè)有兩個單調(diào)區(qū)間,對稱后有四個單調(diào)區(qū)間.
所以
2m+3
2
<0,即m<-
3
2

故選A
點評:本題主要考查二次函數(shù)配方法研究其單調(diào)性,同時說明單調(diào)性與對稱軸和開口方向有關(guān).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2+ax-1在x∈[1,3]是單調(diào)遞減函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=|x2-4x|-a的零點個數(shù)為3,則a=
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
-x2+2x+3
,則f(x)的單調(diào)遞增區(qū)間是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2•lga-6x+2與X軸有且只有一個公共點,那么實數(shù)a的取值范圍是
a=1或a=10
9
2
a=1或a=10
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)南二模)下列命題:
①若函數(shù)f(x)=x2-2x+3,x∈[-2,0]的最小值為2;
②線性回歸方程對應(yīng)的直線
?
y
=
?
b
x+
?
a
至少經(jīng)過其樣本數(shù)據(jù)點(x1,y1),(x2,y2),…,(xn,yn)中的一個點;
③命題p:?x∈R,使得x2+x+1<0則¬p:?x∈R,均有x2+x+1≥0;
④若x1,x2,…,x10的平均數(shù)為a,方差為b,則x1+5,x2+5,…,x10+5的平均數(shù)為a+5,方差為b+25.
其中,錯誤命題的個數(shù)為( 。

查看答案和解析>>

同步練習(xí)冊答案