()定義在R上的函數(shù)既是奇函數(shù),又是周期函數(shù),是它的一個(gè)正周期.若將方程在閉區(qū)間上的根的個(gè)數(shù)記為,則可能為

  (A)0                                     (B)1                                          (C)3                                (D)5


解析:

解D析:定義在R上的函數(shù)是奇函數(shù),,又是周期函數(shù),是它的一個(gè)正周期,∴,,∴,則可能為5,選D。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x),g(x)都是定義在R上的函數(shù),且滿足以下條件:
f(x)=
g(x)
ax
(a>0,且a≠1);
②g(x)≠0;
③f(x)?g′(x)>f′(x)?g(x).
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,則a等于( 。
A、
1
2
B、
5
4
C、2
D、2或
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)=
1
|x-1|
,x≠1
1,x=1
,若關(guān)于x的方程f2(x)+bf(x)+c=0,有3個(gè)不等的實(shí)數(shù)根x1,x2,x3,則x1+x2+x3=( 。
A、0B、1C、3D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x)滿足:對(duì)任意的x,y∈R都有f(x)+f(y)=f(
x2+y2
)
成立,f(1)=1,且當(dāng)x>0時(shí),f(x)>0.
(1)求f(-1)的值,并判斷y=f(x)的奇偶性;
(2)證明:y=f(x)在(0,+∞)上的單調(diào)遞增;
(3)若關(guān)于x的方程2f(x)=f(
a(x-1)
x+1
)
在(2,+∞)上有兩個(gè)不同的實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(x)-f(-x)=0,且f(x)在區(qū)間(-∞,0]上遞減,且有f(a+1)>f(2a-1),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)若定義在R上的函數(shù)f(x)滿足f(-x)=f(x),f(2-x)=f(x),且當(dāng)x∈[0,1]時(shí),其圖象是四分之一圓(如圖所示),則函數(shù)H(x)=|xex|-f(x)在區(qū)間[-3,1]上的零點(diǎn)個(gè)數(shù)為( 。
A、5B、4C、3D、2

查看答案和解析>>

同步練習(xí)冊(cè)答案