橢圓+=1的焦點(diǎn)為F1和F2,點(diǎn)P在橢圓上,線段PF1的中點(diǎn)在y軸上,那么|PF1|是|PF2|的(    )

A.7倍               B.5倍               C.4倍              D.3倍

解析:設(shè)F1(-3,0)、F2(3,0)、P(x0,y0).

∵PF1的中點(diǎn)在y軸上,∴=0.

∴將x0=3代入橢圓=1中,得y0.

∴P(3,±),|PF2|=|y0|=.

    而|PF1|+|PF2|=2a=4,|PF1|=,

∴|PF1|是|PF2|的7倍.

答案:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知拋物線C:x2=4y的焦點(diǎn)為F,過點(diǎn)F作直線l交拋物線C于A、B兩點(diǎn);橢圓E的中心在原點(diǎn),焦點(diǎn)在x軸上,點(diǎn)F是它的一個(gè)頂點(diǎn),且其離心率e=
3
2

(1)經(jīng)過A、B兩點(diǎn)分別作拋物線C的切線l1,l2,切線l1與l2相交于點(diǎn)M.證明:
MF
MA
=
MF
MB
;
(2)橢圓E上是否存在一點(diǎn)M',經(jīng)過點(diǎn)M'作拋物線C的兩條切線M'A',M'B'(A',B'為切點(diǎn)),使得直線A'B'過點(diǎn)F?若存在,求出拋物線C與切線M'A',M'B'所圍成圖形的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,拋物線C:y2=8x的焦點(diǎn)為F,橢圓Σ的中心在坐標(biāo)原點(diǎn),離心率e=
12
,且F是橢圓Σ的一個(gè)焦點(diǎn).
(1)求橢圓Σ的標(biāo)準(zhǔn)方程;
(2)過F作垂直于x軸的直線,與橢圓Σ相交于A、B兩點(diǎn),試探究在橢圓Σ上是否存在點(diǎn)P,使△PAB為直角三角形.若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)A、B分別是以雙曲線
x2
16
-
y2
20
=1
的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的橢圓C長軸的左、右端點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓C上,且位于x軸上方,
PA
PF
=0

(I)求橢圓C的方程;
(II)求點(diǎn)P的坐標(biāo);
(III)設(shè)M是橢圓長軸AB上的一點(diǎn),點(diǎn)M到直線AP的距離等于|MB|,求橢圓上的點(diǎn)到M的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,拋物線C:y2=8x的焦點(diǎn)為F.橢圓Σ的中心在坐標(biāo)原點(diǎn),離心率e=
1
2
,并以F為一個(gè)焦點(diǎn).
(1)求橢圓Σ的標(biāo)準(zhǔn)方程;
(2)設(shè)A1A2是橢圓Σ的長軸(A1在A2的左側(cè)),P是拋物線C在第一象限的一點(diǎn),過P作拋物線C的切線,若切線經(jīng)過A1,求證:tan∠A1PA2=
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
y2
a2
+
x2
b2
=1(a>b>0)的右頂點(diǎn)為P(1,0),過C1的焦點(diǎn)且垂直長軸的弦長為1.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)設(shè)拋物線C2:y=x2+h(h∈R)的焦點(diǎn)為F,過F點(diǎn)的直線l交拋物線與A、B兩點(diǎn),過A、B兩點(diǎn)分別作拋物線C2的切線交于Q點(diǎn),且Q點(diǎn)在橢圓C1上,求△ABQ面積的最值,并求出取得最值時(shí)的拋物線C2的方程.

查看答案和解析>>

同步練習(xí)冊答案