4.設(shè)是定義在R上的偶函數(shù),且f(x+2)=f(2-x)時,當(dāng)x∈[-2,0]時,$f(x)={(\frac{{\sqrt{2}}}{2})^x}-1$,若(-2,6)在區(qū)間內(nèi)關(guān)于x的方程xf(x)-loga(x+2)=0(a>0且a≠1)有且只有4個不同的根,則實數(shù)a的范圍是( 。
A.$(\frac{1}{4},1)$B.(1,4)C.(1,8)D.(8,+∞)

分析 由已知中可以得到函數(shù)f(x)是一個周期函數(shù),且周期為4,將方程f(x)-loga(x+2)=0恰有4個不同的實數(shù)解,轉(zhuǎn)化為函數(shù)f(x)的與函數(shù)y=-loga(x+2)的圖象恰有4個不同的交點,數(shù)形結(jié)合即可得到實數(shù)a的取值范圍.

解答 解:∵對于任意的x∈R,都有f(x-2)=f(2+x),
∴f(x+4)=f[2+(x+2)]=f[(x+2)-2]=f(x),
∴函數(shù)f(x)是一個周期函數(shù),且T=4.
又∵當(dāng)x∈[-2,0]時,$f(x)={(\frac{{\sqrt{2}}}{2})^x}-1$,且函數(shù)f(x)是定義在R上的偶函數(shù),
若在區(qū)間(-2,6)內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0恰有4個不同的實數(shù)解,
則函數(shù)y=f(x)與y=loga(x+2)(a>1)在區(qū)間(-2,6)上有四個不同的交點,如下圖所示:

又f(-2)=f(2)=f(6)=1,
則對于函數(shù)y=loga(x+2),
由題意可得,當(dāng)x=6時的函數(shù)值小于1,
即loga8<1,
由此解得:a>8,
∴a的范圍是(8,+∞)
故選D.

點評 本題考查的知識點是根的存在性及根的個數(shù)判斷,指數(shù)函數(shù)與對數(shù)函數(shù)的圖象與性質(zhì),其中根據(jù)方程的解與函數(shù)的零點之間的關(guān)系,將方程根的問題轉(zhuǎn)化為函數(shù)零點問題,是解答本題的關(guān)鍵,體現(xiàn)了轉(zhuǎn)化和數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如果實數(shù)x、y滿足關(guān)系$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y≤0}\\{2x-y+2≥0}\end{array}\right.$則(x-1)2+y2的最小值是( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=f(x)定義在區(qū)間(-3,7)上,其導(dǎo)函數(shù)如圖所示,則函數(shù)y=f(x)在區(qū)間(-3,7)上極小值的個數(shù)是( 。
A.2個B.3個C.4個D.5個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知直線l:x+ay-1=0(a∈R)是圓C:x2+y2-4x-2y+1=0的對稱軸,過點A(-4,a)作圓C的一條切線,切點為B,則|AB|=( 。
A.2B.4$\sqrt{2}$C.2$\sqrt{10}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合P={x|1≤x≤3},Q={x|(x-1)2≤4},則P∩Q=(  )
A.[-1,3]B.[1,3]C.[1,2]D.(-∞,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知f(cosx)=sin3x,則f(sin20°)的值為( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.給出下列等式:
(1)$\overrightarrow{a}$•$\overrightarrow{0}$=$\overrightarrow{0}$;
(2)$\overrightarrow{0}$•$\overrightarrow{a}$=$\overrightarrow{0}$;
(3)若$\overrightarrow{a}$,$\overrightarrow$同向共線,則$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|;
(4)$\overrightarrow{a}$≠0,$\overrightarrow$≠0,則$\overrightarrow{a}$•$\overrightarrow$≠0;
(5)$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$•$\overrightarrow$中至少有一個為0;
(6)若$\overrightarrow{a}$,$\overrightarrow$均是單位向量,則$\overrightarrow{a}$2=$\overrightarrow$2
以上成立的是( 。
A.(1)(2)(5)(6)B.(3)(6)C.(2)(3)(4)D.(6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)在△ABC中,若2lgtanB=lgtanA+lgtanC,則B的取值范圍是[$\frac{π}{3}$,$\frac{π}{2}$).
(2)求函數(shù)y=7-4sinxcosx+4cos2x-4cos4x的最大值10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若復(fù)數(shù)z滿足$\frac{1-z}{1+z}=i$,則|$\overline{z}$-2|的值為$\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊答案