如圖,在三棱柱ABC-A1B1C1中,AB=AC,側(cè)棱AA1垂直于底面,D、E分別為BC、B1C1的中點(diǎn),F(xiàn)為側(cè)棱BB1上的一點(diǎn).
(Ⅰ)求證:A1E∥平面ADF;
(Ⅱ)求證:平面ADF⊥平面BCC1B1
考點(diǎn):平面與平面垂直的判定,直線與平面平行的判定
專題:證明題,空間位置關(guān)系與距離
分析:(Ⅰ)先證明四邊形A1AED為平行四邊形,可得A1E∥AD,由AD?平面AFD,A1E?平面AFD,即可證A1E∥平面ADF;
(Ⅱ)先證明AD⊥BC,AD⊥ED,從而可證AD⊥平面BCC1B1,即可證明平面ADF⊥平面BCC1B1
解答: 證明:(Ⅰ)∵如下圖,在三棱柱ABC-A1B1C1中,AB=AC,側(cè)棱AA1垂直于底面,D、E分別為BC、B1C1的中點(diǎn)
B1E
.
BD
,
∴ED
.
A1A
∴四邊形A1AED為平行四邊形,可得A1E∥AD
∵AD?平面AFD,A1E?平面AFD,
∴A1E∥平面ADF;
(Ⅱ)∵AB=AC,D、E分別為BC、B1C1的中點(diǎn)
∴AD⊥BC
∵側(cè)棱AA1垂直于底面,由(I)得ED∥A1A
∴AD⊥ED
又∵AD∩ED=D
∴AD⊥平面BCC1B1
又∵AD?平面AFD,
∴平面ADF⊥平面BCC1B1
點(diǎn)評(píng):本題主要考察了平面與平面垂直的判定,直線與平面平行的判定,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合S={x∈Z|
8
x-1
∈N*},試用列舉法表示出集合S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2+sinx,x≥0
-x2+cos(x+α),x<0
是奇函數(shù),則sinα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=ex+4x-3的零點(diǎn)所在的大致區(qū)間是(  )
A、(-
1
4
,0)
B、(0,
1
4
C、(
1
4
1
2
D、(
1
2
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠有十批羊毛,在處理前后,分別測(cè)得含脂率(%)分別如下:
羊毛一羊毛二羊毛三羊毛四羊毛五羊毛六羊毛七羊毛八羊毛九羊毛十
處理
前x
6141520212330334456
處理
后y
4578101213151626
(1)將處理前后的羊毛含脂率用莖葉圖表示,并由圖出發(fā)分析比較后,你有何結(jié)論;
(2)若分別在處理前與處理后從這十批羊毛中各隨機(jī)抽出1批羊毛進(jìn)行檢查,求兩次檢查中至少有1批羊毛含脂率在5%到15%之間(包括5%與15%)的概率;
(3)為了檢查羊毛抽脂機(jī)的抽脂性能,請(qǐng)?jiān)O(shè)計(jì)一程序框圖,求出羊毛處理前的含脂率x%關(guān)于處理后的含脂率y%的線性回歸方程
y
=bx+a中的斜率b與截距a.
(計(jì)算公式)b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}的首項(xiàng)為1,公比為q,前n項(xiàng)和為S,則數(shù)列{
1
an
}的前n項(xiàng)之和為( 。
A、
1
S
B、S
C、S•q1-n
D、S-1•q1-n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)O是△ABC內(nèi)部的一點(diǎn),
OA
+2
OB
+4
OC
=
0
,則S△BOC:S△AOC:S△AOB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=lg(ax-k•2x)(a>0且a≠2)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題p:關(guān)于xd的不等式x2+2ax+4>0,對(duì)一切x∈R恒成立,q:指數(shù)函數(shù)f(x)=ax是減函數(shù),若p或q為真,p且q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案