7.$\underset{lim}{n→∞}$($\frac{1}{1+2}$+$\frac{1}{1+2+3}$+$\frac{1}{1+2+3+4}$+…+$\frac{1}{1+2+3+…+n}$)=1.

分析 利用$\frac{1}{1+2+3+…+n}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),即可求極限.

解答 解:$\frac{1}{1+2+3+…+n}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
∴$\underset{lim}{n→∞}$($\frac{1}{1+2}$+$\frac{1}{1+2+3}$+$\frac{1}{1+2+3+4}$+…+$\frac{1}{1+2+3+…+n}$)=$\underset{lim}{n→∞}$2($\frac{1}{2}-\frac{1}{n+1}$)=1,
故答案為1.

點(diǎn)評 本題考查極限的計(jì)算,考查等差數(shù)列的求和公式,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)$f(x)={2^x}|{{{log}_{\frac{1}{2}}}x}|-1$的零點(diǎn)個(gè)數(shù)為( 。
A.1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,P為三棱柱ABC-A1B1C1的側(cè)棱AA1上的一個(gè)動點(diǎn),若四棱錐P-BCC1B1的體積為V,則三棱柱ABC-A1B1C1的體積為$\frac{3}{2}V$(用V表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.命題p:?x0∈R,x0≤2的否定是( 。
A.¬p:?x∈R,x≤2B.¬p:?x∈R,x>2C.¬p:?x∈R,x>2D.¬p:?x∈R,x≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知a=9${\;}^{\frac{1}{3}}$,b=3${\;}^{\frac{2}{5}}$,c=4${\;}^{\frac{1}{5}}$,則( 。
A.b<a<cB.a>b>cC.a<b<cD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如果直線y=kx-1與雙曲線x2-y2=4的右支有兩個(gè)公共點(diǎn),求k的取值范圍( 。
A.1<k<$\frac{\sqrt{5}}{2}$B.-$\frac{\sqrt{5}}{2}$<k<$\frac{\sqrt{5}}{2}$C.-$\frac{\sqrt{5}}{2}$<k<-1D.-$\frac{\sqrt{5}}{2}$<k<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.定義運(yùn)算a⊕b=$\left\{\begin{array}{l}a\begin{array}{l}{\;},{a<b}\end{array}\\ b\begin{array}{l}{\;},{a≥b}\end{array}\end{array}$若函數(shù)f(x)=2x⊕2-x,則f(x)的值域是( 。
A.[1,+∞)B.(0,+∞)C.(0,1]D.$[{\frac{1}{2},1}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.類比平面內(nèi)正三角形的“三邊相等,三內(nèi)角相等”的性質(zhì),可推出正四面體的下列哪些性質(zhì),你認(rèn)為比較恰當(dāng)?shù)氖牵ā 。?br />①各棱長相等,同一頂點(diǎn)上的任兩條棱的夾角都相等;
②各個(gè)面都是全等的正三角形,相鄰兩個(gè)面所成的二面角都相等; 
③各個(gè)面都是全等的正三角形,同一頂點(diǎn)上的任兩條棱的夾角都相等.
A.①③B.②③C.①②D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知f(x)=2x3+ax2+b-2是奇函數(shù),則ab=0.

查看答案和解析>>

同步練習(xí)冊答案