已知a為實數(shù),函數(shù)

   (1)求的值;

   (II)若a>2,求函數(shù)的單調(diào)區(qū)間.

解:(1)由

       可得,

       所以

   (2)解:當a>2時,

       令

       可知函數(shù)的單調(diào)增區(qū)間為(-∞,0),(a-2,+∞),單調(diào)減區(qū)間為(0,a-2).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

15、已知a為實數(shù),函數(shù)f(x)=ex(x2-ax+a).
(Ⅰ)求f′(0)的值;
(Ⅱ)若a>2,求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a為實數(shù),函數(shù)f(x)=(1+ax)ex,函數(shù)g(x)=
1
1-ax
,令函數(shù)F(x)=f(x)•g(x).
(1)若a=1,求函數(shù)f(x)的極小值;
(2)當a=-
1
2
時,解不等式F(x)<1;
(3)當a<0時,求函數(shù)F(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a為實數(shù),函數(shù)f(x)=
1
1-ax
,g(x)=(1+ax)ex,記F(x)=f(x)•g(x).
(1)若函數(shù)f(x)在點(0,1)處的切線方程為x+y-1=0,求a的值;
(2)若a=1,求函數(shù)g(x)的最小值;
(3)當a=-
1
2
時,解不等式F(x)<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•鎮(zhèn)江一模)已知a為實數(shù),函數(shù)f(x)=x2-2alnx.
(1)求f(x)在[1,+∞)上的最小值g(a);
(2)若a>0,試證明:“方程f(x)=2ax有唯一解”的充要條件是“a=
12
”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a為實數(shù),函數(shù)f(x)=(x2+1)(x+a)
(I)若f′(-1)=0,求函數(shù)y=f(x)在[-
3
2
,1]上的最大值和最小值;
(II)若對于m取任何值,直線y=
1
2
x+m都不是函數(shù)f(x)圖象的切線,求a值的范圍.

查看答案和解析>>

同步練習冊答案