設(shè)橢圓的左右焦點分別為、,是橢圓上的一點,且,坐標(biāo)原點到直線的距離為

(1)求橢圓的方程;

(2)設(shè)是橢圓上的一點,過點的直線軸于點,交軸于點,若,求直線的斜率.

解: (Ⅰ)由題設(shè)知

由于,則有, A

所在直線方程為

所以坐標(biāo)原點到直線的距離為,

,所以,解得:.

所求橢圓的方程為.

(2)由題意可知直線的斜率存在,設(shè)直線斜率為,則直線的方程為,則有.……7分

設(shè),由于、、三點共線,且.根據(jù)題意得,解得.     

  又在橢圓上,故,解得,       綜上,直線的斜率為   

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

設(shè)橢圓的左右焦點分別為,離心率,右準(zhǔn)線為,上的兩個動點,。

(Ⅰ)若,求的值;

(Ⅱ)證明:當(dāng)取最小值時,共線。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分13分)設(shè)橢圓的左右焦點分別為,離心率,過分別作直線,且,分別交直線兩點。

(Ⅰ)若,求 橢圓的方程;

(Ⅱ)當(dāng)取最小值時,試探究

的關(guān)系,并證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓的左右焦點分別為,離心率,點到右準(zhǔn)線為的距離為(Ⅰ)求的值;(Ⅱ)設(shè)上的兩個動點,,證明:當(dāng)取最小值時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省高二上學(xué)期期末終結(jié)性數(shù)學(xué)文卷 題型:解答題

設(shè)橢圓的左右焦點分別為,是橢圓上的一點,且,坐標(biāo)原點到直線的距離為

(1)求橢圓的方程;

(2) 設(shè)是橢圓上的一點,過點的直線軸于點,交軸于點,若,求直線的斜率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省2012屆高二下學(xué)期期末考試數(shù)學(xué)(文) 題型:解答題

(本小題滿分14分)設(shè)橢圓的左右焦點分別為,離心率,點在直線:的左側(cè),且F2l的距離為。

(1)求的值;

(2)設(shè)上的兩個動點,,證明:當(dāng)取最小值時,。

 

查看答案和解析>>

同步練習(xí)冊答案